diff --git a/Publications.html b/Publications.html index 1e14292..ee34ba3 100644 --- a/Publications.html +++ b/Publications.html @@ -389,7 +389,7 @@

Conferences, Robert Gehlhaar, Jan Genoe, -Non-linear electro-optic modelling of a Barium Titanate grating coupler, +Non-linear electro-optic modelling of a Barium Titanate grating coupler, Proc. SPIE 11484, 114840D: Optical Modeling and Performance Predictions XI (August 2020), DOI: 10.1117/12.2568032

@@ -397,14 +397,14 @@

Conferences, Robert Gehlhaar, Jan Genoe, -Hologram Wavefront Shaping by a Non-Linear Electro-Optic Spatial Light Modulator, +Hologram Wavefront Shaping by a Non-Linear Electro-Optic Spatial Light Modulator, Holography: Advances and Modern Trends VIII, April 2023, Prague, Czech Republic

foto

Guillaume Croes, Robert Gehlhaar, Jan Genoe, -Sub-Wavelength Custom Reprogrammable Active Photonic Platform for High-Resolution Beam Shaping and Holography, +Sub-Wavelength Custom Reprogrammable Active Photonic Platform for High-Resolution Beam Shaping and Holography, Proc. SPIE PC12196, PC1219619: Active Photonic Platforms, San Diego, California, United States (October 2022)

@@ -414,7 +414,7 @@

Conferences, Stefan De Gendt, -Integrated Perovskites Oxides on Silicon: From Optical to Quantum Applications, +Integrated Perovskites Oxides on Silicon: From Optical to Quantum Applications, ECS Meeting Abstracts MA2022-01, 1060 , July 2022, DOI: 10.1149/MA2022-01191060mtgabs

@@ -424,7 +424,7 @@

Conferences, Clement Merckling, -Interface Control and Characterization of SrTiO3/Si(001), +Interface Control and Characterization of SrTiO3/Si(001), Proc. E-MRS-fall, 20th to 23rd September 2021

diff --git a/_downloads/281d5e1985b45eac2c473da7d23b0b70/XII1SPIE.pdf b/_downloads/281d5e1985b45eac2c473da7d23b0b70/XII1SPIE.pdf new file mode 100644 index 0000000..148eaf7 Binary files /dev/null and b/_downloads/281d5e1985b45eac2c473da7d23b0b70/XII1SPIE.pdf differ diff --git a/_downloads/414cdccd01cdff444540bf258d1f1078/ECS_Merckling_invited.pdf b/_downloads/414cdccd01cdff444540bf258d1f1078/ECS_Merckling_invited.pdf new file mode 100644 index 0000000..942b678 Binary files /dev/null and b/_downloads/414cdccd01cdff444540bf258d1f1078/ECS_Merckling_invited.pdf differ diff --git a/_downloads/da7a03422040fbcfd7ca8bef893f6bfe/Hologramwavefrontshaping_SPIEOptics.html b/_downloads/da7a03422040fbcfd7ca8bef893f6bfe/Hologramwavefrontshaping_SPIEOptics.html new file mode 100644 index 0000000..484e789 --- /dev/null +++ b/_downloads/da7a03422040fbcfd7ca8bef893f6bfe/Hologramwavefrontshaping_SPIEOptics.html @@ -0,0 +1,2172 @@ + + + + + +Hologram wavefront shaping by a nonlinear electro-optic spatial light modulator | SPIE Optics + Optoelectronics + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + +
+ + +
+
+ +
+ Conference 12574 + > + Paper 12574-8 +
+ + +
+
Paper 12574-8
+

+ Hologram wavefront shaping by a nonlinear electro-optic spatial light modulator +

+
+
+ +
+ +25 April 2023 • 11:30 - 11:50 CEST | Zodiac
+
+
+
+ +
+
+
+ + + + +
+
+ +
+
+
+ +
+

Abstract

+
+
We present a novel waveguide-based approach that enables custom wavefront shaping and holography by employing a non-linear electro-optic spatial light modulator. The device consists of a metamaterial electrode cladding that modulates the Barium Titanate waveguide on a sub-wavelength scale. Our generic modulation principle employs electric fields and non-linear optics to create any desired wavefront and is applicable to Pockels and Kerr cells as well as liquid crystals. Here, we present the operation of our tunable waveguide based SLM, specifically for its use as high-quality holographic display.
+ +
+
+ +
+

Presenter

+
+Guillaume Croes
+
imec (Belgium), KU Leuven (Belgium)
+
Guillaume Croes is currently a PhD researcher at the KUL and imec, Leuven, Belgium. He earned his Bachelor of Science at Hasselt University in 2016, and his Master of Science at University of Technology Eindhoven in 2018. During his master thesis, he worked at imec under supervision of prof. J. Genoe on perovskite light emitting diodes. Afterwards, he started a PhD on holography with prof J. Genoe, closely aligned with his ERC advanced grant titled “Metamaterials for videoholography”. In 2019, he was granted a strategic basic research PhD Fellowship by Fonds voor Wetenschappelijk Onderzoek (FWO).
+
+ +
+
+
+ +
+ + + +
+
+ + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/_downloads/f95af6f4eabf74f85301f7713c58fc7e/Sub-wavelengthcustomreprogrammable.pdf b/_downloads/f95af6f4eabf74f85301f7713c58fc7e/Sub-wavelengthcustomreprogrammable.pdf new file mode 100644 index 0000000..3e05496 Binary files /dev/null and b/_downloads/f95af6f4eabf74f85301f7713c58fc7e/Sub-wavelengthcustomreprogrammable.pdf differ diff --git a/_sources/Publications.md b/_sources/Publications.md index c4412e4..9d68e37 100644 --- a/_sources/Publications.md +++ b/_sources/Publications.md @@ -87,7 +87,7 @@ Nikolay Smolentsev, Tsang-Hsuan Wang[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-7760-7500), Robert Gehlhaar[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-3038-9462), Jan Genoe[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-4019-5979), -**[Non-linear electro-optic modelling of a Barium Titanate grating coupler](docs/.pdf)**, +**[Non-linear electro-optic modelling of a Barium Titanate grating coupler](docs/XII1SPIE.pdf)**, Proc. SPIE 11484, 114840D: Optical Modeling and Performance Predictions XI (August 2020), [DOI: 10.1117/12.2568032](http://dx.doi.org/10.1117/12.2568032) @@ -95,14 +95,14 @@ Proc. SPIE 11484, 114840D: Optical Modeling and Performance Predictions XI (Augu - Guillaume Croes[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0001-6168-9794), Robert Gehlhaar[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-3038-9462), Jan Genoe[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-4019-5979), -**[Hologram Wavefront Shaping by a Non-Linear Electro-Optic Spatial Light Modulator](docs/.pdf)**, +**[Hologram Wavefront Shaping by a Non-Linear Electro-Optic Spatial Light Modulator](docs/Hologramwavefrontshaping_SPIEOptics.html)**, Holography: Advances and Modern Trends VIII, April 2023, Prague, Czech Republic * - ![foto](./images/Guillaume2022.png) - Guillaume Croes[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0001-6168-9794), Robert Gehlhaar[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-3038-9462), Jan Genoe[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-4019-5979), -**[Sub-Wavelength Custom Reprogrammable Active Photonic Platform for High-Resolution Beam Shaping and Holography](docs/.pdf)**, +**[Sub-Wavelength Custom Reprogrammable Active Photonic Platform for High-Resolution Beam Shaping and Holography](docs/Sub-wavelengthcustomreprogrammable.pdf)**, Proc. SPIE PC12196, PC1219619: Active Photonic Platforms, San Diego, California, United States (October 2022) * - @@ -112,7 +112,7 @@ Tsang-Hsuan Wang[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-7760-7 Moloud Kaviani, Jan Genoe[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-4019-5979), Stefan De Gendt[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0003-3775-3578), -**[Integrated Perovskites Oxides on Silicon: From Optical to Quantum Applications](docs/.pdf)**, +**[Integrated Perovskites Oxides on Silicon: From Optical to Quantum Applications](docs/ECS_Merckling_invited.pdf)**, ECS Meeting Abstracts MA2022-01, 1060 , July 2022, [DOI: 10.1149/MA2022-01191060mtgabs](http://dx.doi.org/10.1149/MA2022-01191060mtgabs) @@ -122,7 +122,7 @@ Robert Gehlhaar[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-3038-94 Thierry Conard, Jan Genoe[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0002-4019-5979), Clement Merckling[{fab}`orcid;sd-text-success`](http://orcid.org/0000-0003-3084-2543), -**[Interface Control and Characterization of SrTiO3/Si(001)](docs/.pdf)**, +**[Interface Control and Characterization of SrTiO3/Si(001)](docs/EMRS2020Spring_Abstract_Tsang.pdf)**, Proc. E-MRS-fall, 20th to 23rd September 2021 * - diff --git a/_sources/sota.ipynb b/_sources/sota.ipynb index eb28c1a..4ccd1a4 100644 --- a/_sources/sota.ipynb +++ b/_sources/sota.ipynb @@ -3,7 +3,13 @@ { "cell_type": "markdown", "id": "e17bd195-1af6-4111-b052-81401001f792", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ "# State-of-the-Art overview: Modulation mechanisms for dynamic holography\n", "\n", @@ -15,7 +21,7 @@ "The results reported in the different subsections can be summarized in {numref}`SotA`.\n", "The most relevant metrics are the hologram pixel resolution and the refresh rate.\n", "The target for the hologram pixel resolution is defined by the 180 degree blue diffraction angle.\n", - "The target for the refresh rate is 360 Hz, as this allows to swap sufficiently fast the RGB colours of the 3 lasers without causing artefacts that are can be noticed." + "The target for the refresh rate is 360 Hz, as this allows to swap sufficiently fast the RGB colours of the 3 lasers without causing artifacts that are can be noticed." ] }, { @@ -449,7 +455,7 @@ "```\n", "\n", "\n", - "To date, the effect has been applied in tunable epsilon near zero materials {cite}`Lu2012UltracompactWaveguides, Park2015ElectricallyAbsorbers`, plasmonic modulators {cite}`Krasavin2012PhotonicModulator, Babicheva2012PlasmonicPermittivity, Vasudev2013Electro-opticalMaterial, Lee2014NanoscalePlasMOStor` and a variety of beam steering applications. This last topic was pioneered by a gate tunable metasurface constructed from a Gold - ITO - Aluminium Oxide back plane on which a Gold grating electrode was patterned to enable MIM plasmonic modulation. Here, the grating serves as reflection antenna which can be modulated by applying electrical bias to both gold electrodes, in doing so changing reflection characteristics.{cite}`Huang2016Gate-TunableMetasurfaces` At an incident wavelength of $1550nm$ and $2.5V$ bias a normalized reflectance change of $28.9\\%$ and phase shift of $180^{\\circ}C$ was found. Beam steering was enabled by biasing periodically with varying voltage, which allowed switching between $0$ order and $-1$ and $+1$ order reflection. Changing the periodicity of the applied bias tunes the steering angle. Afterwards, both amplitude and phase modulation metasurfaces implementing TCOs were investigated. Amplitude modulation proved especially interesting in tunable absorbers which often utilize a similar MIM structure that acts as a tunable resonant cavity showing a reflectance change of up to $82\\%$ at $1550nm$.{cite}`Park2015ElectricallyAbsorbers, Kim2017ActiveResonance, Zhang2019Gate-tunableHeterostructure, Zhao2019Gate-tunableOxide` On the other hand, TCO based phase modulators have steadily been improved towards full $2\\pi$ phase modulation.{cite}`Park2017DynamicMetasurfaces` Currently, phase modulation up to $300^{\\cir}$C has been shown in the infrared.{cite}`KafaieShirmanesh2018Dual-GatedTunability` Next to that, phase modulation devices using carrier injection have shown beam steering, LIDAR and beam focusing.{cite}`Kim2022Two-dimensionalRegime, Park2021All-solid-stateApplications, Shirmanesh2020Electro-opticallyMetasurfaces` \n", + "To date, the effect has been applied in tunable epsilon near zero materials {cite}`Lu2012UltracompactWaveguides, Park2015ElectricallyAbsorbers`, plasmonic modulators {cite}`Krasavin2012PhotonicModulator, Babicheva2012PlasmonicPermittivity, Vasudev2013Electro-opticalMaterial, Lee2014NanoscalePlasMOStor` and a variety of beam steering applications. This last topic was pioneered by a gate tunable metasurface constructed from a Gold - ITO - Aluminium Oxide back plane on which a Gold grating electrode was patterned to enable MIM plasmonic modulation. Here, the grating serves as reflection antenna which can be modulated by applying electrical bias to both gold electrodes, in doing so changing reflection characteristics.{cite}`Huang2016Gate-TunableMetasurfaces` At an incident wavelength of $1550nm$ and $2.5V$ bias a normalized reflectance change of $28.9\\%$ and phase shift of $180^{\\circ}C$ was found. Beam steering was enabled by biasing periodically with varying voltage, which allowed switching between $0$ order and $-1$ and $+1$ order reflection. Changing the periodicity of the applied bias tunes the steering angle. Afterwards, both amplitude and phase modulation metasurfaces implementing TCOs were investigated. Amplitude modulation proved especially interesting in tunable absorbers which often utilize a similar MIM structure that acts as a tunable resonant cavity showing a reflectance change of up to $82\\%$ at $1550nm$.{cite}`Park2015ElectricallyAbsorbers, Kim2017ActiveResonance, Zhang2019Gate-tunableHeterostructure, Zhao2019Gate-tunableOxide` On the other hand, TCO based phase modulators have steadily been improved towards full $2\\pi$ phase modulation.{cite}`Park2017DynamicMetasurfaces` Currently, phase modulation up to $300^{\\circ}$C has been shown in the infrared.{cite}`KafaieShirmanesh2018Dual-GatedTunability` Next to that, phase modulation devices using carrier injection have shown beam steering, LIDAR and beam focusing.{cite}`Kim2022Two-dimensionalRegime, Park2021All-solid-stateApplications, Shirmanesh2020Electro-opticallyMetasurfaces` \n", "To my knowledge, no TCOs based modulators have been implemented into a holographic display even though this could be achieved by a 2D array of individually addressed elements." ] }, diff --git a/_static/ECS_Merckling_invited.pdf b/_static/ECS_Merckling_invited.pdf new file mode 100644 index 0000000..942b678 Binary files /dev/null and b/_static/ECS_Merckling_invited.pdf differ diff --git a/_static/EMRS2021Fall_TsangSTO.pdf b/_static/EMRS2021Fall_TsangSTO.pdf new file mode 100644 index 0000000..35ce6d6 Binary files /dev/null and b/_static/EMRS2021Fall_TsangSTO.pdf differ diff --git a/_static/Hologramwavefrontshaping_SPIEOptics.html b/_static/Hologramwavefrontshaping_SPIEOptics.html new file mode 100644 index 0000000..484e789 --- /dev/null +++ b/_static/Hologramwavefrontshaping_SPIEOptics.html @@ -0,0 +1,2172 @@ + + + + + +Hologram wavefront shaping by a nonlinear electro-optic spatial light modulator | SPIE Optics + Optoelectronics + + + + + + + + + + + + + + + + + + +
+
+ +
+
+ + +
+ + +
+
+ +
+ Conference 12574 + > + Paper 12574-8 +
+ + +
+
Paper 12574-8
+

+ Hologram wavefront shaping by a nonlinear electro-optic spatial light modulator +

+
+
+ +
+ +25 April 2023 • 11:30 - 11:50 CEST | Zodiac
+
+
+
+ +
+
+
+ + + + +
+
+ +
+
+
+ +
+

Abstract

+
+
We present a novel waveguide-based approach that enables custom wavefront shaping and holography by employing a non-linear electro-optic spatial light modulator. The device consists of a metamaterial electrode cladding that modulates the Barium Titanate waveguide on a sub-wavelength scale. Our generic modulation principle employs electric fields and non-linear optics to create any desired wavefront and is applicable to Pockels and Kerr cells as well as liquid crystals. Here, we present the operation of our tunable waveguide based SLM, specifically for its use as high-quality holographic display.
+ +
+
+ +
+

Presenter

+
+Guillaume Croes
+
imec (Belgium), KU Leuven (Belgium)
+
Guillaume Croes is currently a PhD researcher at the KUL and imec, Leuven, Belgium. He earned his Bachelor of Science at Hasselt University in 2016, and his Master of Science at University of Technology Eindhoven in 2018. During his master thesis, he worked at imec under supervision of prof. J. Genoe on perovskite light emitting diodes. Afterwards, he started a PhD on holography with prof J. Genoe, closely aligned with his ERC advanced grant titled “Metamaterials for videoholography”. In 2019, he was granted a strategic basic research PhD Fellowship by Fonds voor Wetenschappelijk Onderzoek (FWO).
+
+ +
+
+
+ +
+ + + +
+
+ + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/_static/Sub-wavelengthcustomreprogrammable.pdf b/_static/Sub-wavelengthcustomreprogrammable.pdf new file mode 100644 index 0000000..3e05496 Binary files /dev/null and b/_static/Sub-wavelengthcustomreprogrammable.pdf differ diff --git a/_static/XII1SPIE.pdf b/_static/XII1SPIE.pdf new file mode 100644 index 0000000..148eaf7 Binary files /dev/null and b/_static/XII1SPIE.pdf differ diff --git a/bib.html b/bib.html index 3d1b185..325c689 100644 --- a/bib.html +++ b/bib.html @@ -291,23 +291,23 @@

Bibliography
-
+ -
+
[2]

Guillaume Croes, Nicolae Smolentsev, Tsang Hsuan Wang, Robert Gehlhaar, and Jan Genoe. Non-linear electro-optic modelling of a Barium Titanate grating coupler. In Proc SPIE :Optical Modeling and Performance Predictions XI, volume 11484, 114840D. Online Only, United States, August 2020. SPIE. doi:10.1117/12.2568032.

-
+
[3]

Guillaume Croes, Robert Gehlhaar, and Jan Genoe. Sub-wavelength custom reprogrammable active photonic platform for high-resolution beam shaping and holography. In Active Photonic Platforms 2022, volume PC12196, PC1219619. San Diego, California, United States, October 2022. SPIE. doi:10.1117/12.2632022.

-
+
[4]

Clement Merckling, Islam Ahmed, Tsang Hsuan Tsang, Moloud Kaviani, Jan Genoe, and Stefan De Gendt. (Invited) Integrated Perovskites Oxides on Silicon: From Optical to Quantum Applications. ECS Meeting Abstracts, MA2022-01(19):1060, July 2022. doi:10.1149/MA2022-01191060mtgabs.

-
+
[5]

Tsang-Hsuan Wang, Po-Chun (Brent) Hsu, Maxim Korytov, Jan Genoe, and Clement Merckling. Polarization control of epitaxial barium titanate (BaTiO3) grown by pulsed-laser deposition on a MBE-SrTiO3/Si(001) pseudo-substrate. Journal of Applied Physics, 128(10):104104, September 2020. doi:10.1063/5.0019980.

@@ -315,21 +315,21 @@

Bibliography[6]

Tsang Hsuan Wang, M. Korytov, P. C. Hsu, Jan Genoe, and Clement Merckling. Single Crystalline BaTiO3 Grown by Pulsed-laser deposition (PLD) on SrTiO3 / Si Pseudo-substrate. In Proc. E-MRS Spring, Advanced Functional Films Grown by Pulsed Deposition Methods. Strasbourg, France, May 2020.

-
+ -
+
[8]

T-H Wang, Robert Gehlhaar, T. Conard, Jan Genoe, and Clement Merckling. Interface Control and Characterization of SrTiO3/Si(001). In Proc. E-MRS-fall. online Only, 20th to 23rd September 2021. MRS.

-
+
[9] -

Tsang-Hsuan Wang. Study of Perovskite Oxide and Its Application on Video Holography. PhD thesis, KULeuven, Leuven, Belgium, Monday, Feb 13, 2023 @17h00.

+

Tsang-Hsuan Wang, Jan Genoe, and Clement Merckling. Study of Barium Titanate Epitaxy on Silicon toward Its Application in Video Holography. PhD thesis, KULeuven, Leuven, Belgium, Monday, Feb 13, 2023 @17h00.

[10] -

F. S. Chen. Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3. Journal of Applied Physics, 40(8):3389–3396, 7 1969. URL: https://pubs.aip.org/jap/article/40/8/3389/167280/Optically-Induced-Change-of-Refractive-Indices-in, doi:10.1063/1.1658195.

+

F. S. Chen. Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3. Journal of Applied Physics, 40(8):3389–3396, 7 1969. doi:10.1063/1.1658195.

[11] @@ -345,7 +345,7 @@

Bibliography [14] -

K. Buse, A. Adibi, and D. Psaltis. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature, 393(6686):665–668, 6 1998. URL: https://www.nature.com/articles/31429, doi:10.1038/31429.

+

K. Buse, A. Adibi, and D. Psaltis. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature, 393(6686):665–668, 6 1998. doi:10.1038/31429.

-
+
[30] -

Arash Nemati, Qian Wang, Minghui Hong, and Jinghua Teng. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electronic Advances, 1(5):18000901–18000925, 2018. URL: http://www.oejournal.org/J/OEA/Article/Details/A180629000007, doi:10.29026/oea.2018.180009.

+

Arash Nemati, Qian Wang, Minghui Hong, and Jinghua Teng. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electronic Advances, 1(5):18000901–18000925, 2018. doi:10.29026/oea.2018.180009.

-
+
[31]

Tong Cui, Benfeng Bai, and Hong Bo Sun. Tunable Metasurfaces Based on Active Materials. Advanced Functional Materials, 3 2019. doi:10.1002/ADFM.201806692.

[32] -

Amr M. Shaltout, Vladimir M. Shalaev, and Mark L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 2019. URL: http://dx.doi., doi:10.1126/SCIENCE.AAT3100.

+

Amr M. Shaltout, Vladimir M. Shalaev, and Mark L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 2019. doi:10.1126/SCIENCE.AAT3100.

-
+
[33] -

Chang Won Lee, Hee Jin Choi, and Heejeong Jeong. Tunable metasurfaces for visible and SWIR applications. Nano Convergence, 7(1):1–11, 12 2020. URL: https://link.springer.com/articles/10.1186/s40580-019-0213-2 https://link.springer.com/article/10.1186/s40580-019-0213-2, doi:10.1186/S40580-019-0213-2/FIGURES/5.

+

Chang Won Lee, Hee Jin Choi, and Heejeong Jeong. Tunable metasurfaces for visible and SWIR applications. Nano Convergence, 7(1):1–11, 12 2020. doi:10.1186/S40580-019-0213-2.

[34] @@ -433,11 +433,11 @@

Bibliography [36] -

Xiaoguang Zhao, Zhenci Sun, Lingyun Zhang, Zilun Wang, Rongbo Xie, Jiahao Zhao, Rui You, and Zheng You. Review on Metasurfaces: An Alternative Approach to Advanced Devices and Instruments. Advanced Devices & Instrumentation, 2022:1–19, 9 2022. URL: https://spj.sciencemag.org/journals/adi/2022/9765089/, doi:10.34133/2022/9765089.

+

Xiaoguang Zhao, Zhenci Sun, Lingyun Zhang, Zilun Wang, Rongbo Xie, Jiahao Zhao, Rui You, and Zheng You. Review on Metasurfaces: An Alternative Approach to Advanced Devices and Instruments. Advanced Devices & Instrumentation, 2022:1–19, 9 2022. doi:10.34133/2022/9765089.

[37] -

I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner. Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. Optics Letters, 31(17):2592, 9 2006. URL: https://opg.optica.org/abstract.cfm?URI=ol-31-17-2592, doi:10.1364/OL.31.002592.

+

I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner. Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. Optics Letters, 31(17):2592, 9 2006. doi:10.1364/OL.31.002592.

-
+
[43] -

Alexander Minovich, Dragomir N. Neshev, David A. Powell, Ilya V. Shadrivov, and Yuri S. Kivshar. Tunable fishnet metamaterials infiltrated by liquid crystals. Applied Physics Letters, 4 2010. URL: http://arxiv.org/abs/1004.0802 http://dx.doi.org/10.1063/1.3427429, doi:10.1063/1.3427429.

+

Alexander Minovich, Dragomir N. Neshev, David A. Powell, Ilya V. Shadrivov, and Yuri S. Kivshar. Tunable fishnet metamaterials infiltrated by liquid crystals. Applied Physics Letters, 4 2010. doi:10.1063/1.3427429.

[44] @@ -477,27 +477,27 @@

Bibliography [47] -

Qian Wang, Edward T. F. Rogers, Behrad Gholipour, Chih-Ming Wang, Guanghui Yuan, Jinghua Teng, and Nikolay I. Zheludev. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 10(1):60–65, 1 2016. URL: https://www.nature.com/articles/nphoton.2015.247, doi:10.1038/nphoton.2015.247.

+

Qian Wang, Edward T. F. Rogers, Behrad Gholipour, Chih-Ming Wang, Guanghui Yuan, Jinghua Teng, and Nikolay I. Zheludev. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 10(1):60–65, 1 2016. doi:10.1038/nphoton.2015.247.

-
+
[48] -

Jing Zhao, Chunmei Ouyang, Xieyu Chen, Yanfeng Li, Caihong Zhang, Longcheng Feng, Biaobing Jin, Jiajun Ma, Yi Liu, Shoujun Zhang, Quan Xu, Jiaguang Han, and Weili Zhang. Temperature-controlled terahertz polarization conversion bandwidth. Optics Express, 29(14):21738, 7 2021. URL: https://opg.optica.org/abstract.cfm?URI=oe-29-14-21738, doi:10.1364/OE.431622.

+

Jing Zhao, Chunmei Ouyang, Xieyu Chen, Yanfeng Li, Caihong Zhang, Longcheng Feng, Biaobing Jin, Jiajun Ma, Yi Liu, Shoujun Zhang, Quan Xu, Jiaguang Han, and Weili Zhang. Temperature-controlled terahertz polarization conversion bandwidth. Optics Express, 29(14):21738, 7 2021. doi:10.1364/OE.431622.

[49] -

Ling Wang, Weijun Hong, Li Deng, Shufang Li, Chen Zhang, Jianfeng Zhu, and Hongjun Wang. Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies. Materials, 11(10):2040, 10 2018. URL: http://www.mdpi.com/1996-1944/11/10/2040, doi:10.3390/ma11102040.

+

Ling Wang, Weijun Hong, Li Deng, Shufang Li, Chen Zhang, Jianfeng Zhu, and Hongjun Wang. Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies. Materials, 11(10):2040, 10 2018. doi:10.3390/ma11102040.

[50] -

Alexej V. Pogrebnyakov, Jeremy A. Bossard, Jeremiah P. Turpin, J. David Musgraves, Hee Jung Shin, Clara Rivero-Baleine, Nikolas Podraza, Kathleen A. Richardson, Douglas H. Werner, and Theresa S. Mayer. Reconfigurable near-IR metasurface based on Ge <sub>2</sub> Sb <sub>2</sub> Te <sub>5</sub> phase-change material. Optical Materials Express, 8(8):2264, 8 2018. URL: https://opg.optica.org/abstract.cfm?URI=ome-8-8-2264, doi:10.1364/OME.8.002264.

+

Alexej V. Pogrebnyakov, Jeremy A. Bossard, Jeremiah P. Turpin, J. David Musgraves, Hee Jung Shin, Clara Rivero-Baleine, Nikolas Podraza, Kathleen A. Richardson, Douglas H. Werner, and Theresa S. Mayer. Reconfigurable near-IR metasurface based on Ge <sub>2</sub> Sb <sub>2</sub> Te <sub>5</sub> phase-change material. Optical Materials Express, 8(8):2264, 8 2018. doi:10.1364/OME.8.002264.

[51]

Jiajia Chen, Xieyu Chen, Kuan Liu, Shoujun Zhang, Tun Cao, and Zhen Tian. A Thermally Switchable Bifunctional Metasurface for Broadband Polarization Conversion and Absorption Based on Phase‐Change Material. Advanced Photonics Research, pages 2100369, 4 2022. doi:10.1002/ADPR.202100369.

-
+
[52] -

Ann-Katrin U. Michel, Dmitry N. Chigrin, Tobias W. W. Maß, Kathrin Schönauer, Martin Salinga, Matthias Wuttig, and Thomas Taubner. Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning. Nano Letters, 13(8):3470–3475, 8 2013. URL: https://pubs.acs.org/doi/10.1021/nl4006194, doi:10.1021/nl4006194.

+

Ann-Katrin U. Michel, Dmitry N. Chigrin, Tobias W. W. Maß, Kathrin Schönauer, Martin Salinga, Matthias Wuttig, and Thomas Taubner. Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning. Nano Letters, 13(8):3470–3475, 8 2013. doi:10.1021/nl4006194.

[53] @@ -529,35 +529,35 @@

Bibliography [60] -

Chi-Young Hwang, Gi Heon Kim, Jong-Heon Yang, Chi-Sun Hwang, Seong M. Cho, Won-Jae Lee, Jae-Eun Pi, Ji Hun Choi, Kyunghee Choi, Hee-Ok Kim, Seung-Yeol Lee, and Yong-Hae Kim. Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials. Nanoscale, 10(46):21648–21655, 2018. URL: http://xlink.rsc.org/?DOI=C8NR04471F, doi:10.1039/C8NR04471F.

+

Chi-Young Hwang, Gi Heon Kim, Jong-Heon Yang, Chi-Sun Hwang, Seong M. Cho, Won-Jae Lee, Jae-Eun Pi, Ji Hun Choi, Kyunghee Choi, Hee-Ok Kim, Seung-Yeol Lee, and Yong-Hae Kim. Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials. Nanoscale, 10(46):21648–21655, 2018. doi:10.1039/C8NR04471F.

[61]

Kaichen Dong, Sukjoon Hong, Yang Deng, He Ma, Jiachen Li, Xi Wang, Junyeob Yeo, Letian Wang, Shuai Lou, Kyle B. Tom, Kai Liu, Zheng You, Yang Wei, Costas P. Grigoropoulos, Jie Yao, and Junqiao Wu. A Lithography‐Free and Field‐Programmable Photonic Metacanvas. Advanced Materials, 2 2018. doi:10.1002/adma.201703878.

-
+
[62] -

Xingbo Liu, Qiu Wang, Xueqian Zhang, Hua Li, Quan Xu, Yuehong Xu, Xieyu Chen, Shaoxian Li, Meng Liu, Zhen Tian, Caihong Zhang, Chongwen Zou, Jiaguang Han, and Weili Zhang. Thermally Dependent Dynamic Meta‐Holography Using a Vanadium Dioxide Integrated Metasurface. Advanced Optical Materials, 7(12):1900175, 6 2019. URL: https://onlinelibrary.wiley.com/doi/10.1002/adom.201900175, doi:10.1002/adom.201900175.

+

Xingbo Liu, Qiu Wang, Xueqian Zhang, Hua Li, Quan Xu, Yuehong Xu, Xieyu Chen, Shaoxian Li, Meng Liu, Zhen Tian, Caihong Zhang, Chongwen Zou, Jiaguang Han, and Weili Zhang. Thermally Dependent Dynamic Meta‐Holography Using a Vanadium Dioxide Integrated Metasurface. Advanced Optical Materials, 7(12):1900175, 6 2019. doi:10.1002/adom.201900175.

-
+
[63]

SWAVE Photonics. Swave Photonics Developing World’s First True Holographic Display Technology To Power Reality-First Spatial Computing. 2024. URL: https://swave.io/swave-photonics-developing-worlds-first-true-holographic-display-technology-to-power-reality-first-spatial-computing/.

[64] -

Jason Midkiff, Kyoung Min Yoo, Jong-Dug Shin, Hamed Dalir, Mohammad Teimourpour, and Ray T. Chen. Optical phased array beam steering in the mid-infrared on an InP-based platform. Optica, 7(11):1544, 11 2020. URL: https://opg.optica.org/abstract.cfm?URI=optica-7-11-1544, doi:10.1364/OPTICA.400441.

+

Jason Midkiff, Kyoung Min Yoo, Jong-Dug Shin, Hamed Dalir, Mohammad Teimourpour, and Ray T. Chen. Optical phased array beam steering in the mid-infrared on an InP-based platform. Optica, 7(11):1544, 11 2020. doi:10.1364/OPTICA.400441.

[65]

Jie Sun, Erman Timurdogan, Ami Yaacobi, Ehsan Shah Hosseini, and Michael R. Watts. Large-scale nanophotonic phased array. Nature, 493(7431):195–199, 1 2013. doi:10.1038/nature11727.

-
+
[66] -

Hiroyuki Ito, Yuma Kusunoki, Jun Maeda, Daichi Akiyama, Naoya Kodama, Hiroshi Abe, Ryo Tetsuya, and Toshihiko Baba. Wide beam steering by slow-light waveguide gratings and a prism lens. Optica, 7(1):47, 1 2020. URL: https://opg.optica.org/abstract.cfm?URI=optica-7-1-47, doi:10.1364/OPTICA.381484.

+

Hiroyuki Ito, Yuma Kusunoki, Jun Maeda, Daichi Akiyama, Naoya Kodama, Hiroshi Abe, Ryo Tetsuya, and Toshihiko Baba. Wide beam steering by slow-light waveguide gratings and a prism lens. Optica, 7(1):47, 1 2020. doi:10.1364/OPTICA.381484.

-
+
[67] -

missing author in 1997Thermo-OpticCoefficients

+

Edward D. Palik. Chapter 3 - thermo-optic coefficients. In Handbook of Optical Constants of Solids, pages 115–261. Academic Press, Burlington, 1997. doi:10.1016/B978-012544415-6.50150-3.

-
+
[70]

Karel Van Acoleyen, Hendrik Rogier, and Roel Baets. Two-dimensional optical phased array antenna on silicon-on-Insulator. Optics Express, 18(13):13655, 6 2010. doi:10.1364/oe.18.013655.

-
+
[71] -

William S. Rabinovich, Peter G. Goetz, Marcel W. Pruessner, Rita Mahon, Mike S. Ferraro, Doe Park, Erin Fleet, and Michael J. DePrenger. Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array. Optical Engineering, 55(11):111603, 8 2016. URL: http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.OE.55.11.111603, doi:10.1117/1.OE.55.11.111603.

+

William S. Rabinovich, Peter G. Goetz, Marcel W. Pruessner, Rita Mahon, Mike S. Ferraro, Doe Park, Erin Fleet, and Michael J. DePrenger. Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array. Optical Engineering, 55(11):111603, 8 2016. doi:10.1117/1.OE.55.11.111603.

-
+
[72] -

Seong-Hwan Kim, Jong-Bum You, Yun-Gi Ha, Geumbong Kang, Dae-Seong Lee, Hyeonho Yoon, Dong-Eun Yoo, Dong-Wook Lee, Kyoungsik Yu, Chan-Hyun Youn, and Hyo-Hoon Park. Thermo-optic control of the longitudinal radiation angle in a silicon-based optical phased array. Optics Letters, 44(2):411, 1 2019. URL: https://opg.optica.org/abstract.cfm?URI=ol-44-2-411, doi:10.1364/OL.44.000411.

+

Seong-Hwan Kim, Jong-Bum You, Yun-Gi Ha, Geumbong Kang, Dae-Seong Lee, Hyeonho Yoon, Dong-Eun Yoo, Dong-Wook Lee, Kyoungsik Yu, Chan-Hyun Youn, and Hyo-Hoon Park. Thermo-optic control of the longitudinal radiation angle in a silicon-based optical phased array. Optics Letters, 44(2):411, 1 2019. doi:10.1364/OL.44.000411.

[73] @@ -617,59 +617,59 @@

Bibliography [82] -

Daniel E. Smalley, Sundeep Jolly, Gregg E. Favalora, and Michael G. Moebius. Status of Leaky Mode Holography. Photonics 2021, Vol. 8, Page 292, 8(8):292, 7 2021. URL: https://www.mdpi.com/2304-6732/8/8/292/htm https://www.mdpi.com/2304-6732/8/8/292, doi:10.3390/PHOTONICS8080292.

+

Daniel E. Smalley, Sundeep Jolly, Gregg E. Favalora, and Michael G. Moebius. Status of Leaky Mode Holography. Photonics 2021, Vol. 8, Page 292, 8(8):292, 7 2021. doi:10.3390/PHOTONICS8080292.

[83]

Bingzhao Li, Qixuan Lin, and Mo Li. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature, 620(7973):316–322, 8 2023. doi:10.1038/s41586-023-06201-6.

-
+
[84] -

David S. Ginley and Clark Bright. Transparent Conducting Oxides. MRS Bulletin, 25(8):15–18, 8 2000. URL: http://link.springer.com/10.1557/mrs2000.256, doi:10.1557/mrs2000.256.

+

David S. Ginley and Clark Bright. Transparent Conducting Oxides. MRS Bulletin, 25(8):15–18, 8 2000. doi:10.1557/mrs2000.256.

-
+
[85] -

Elvira Fortunato, David Ginley, Hideo Hosono, and David C. Paine. Transparent Conducting Oxides for Photovoltaics. MRS Bulletin, 32(3):242–247, 3 2007. URL: http://link.springer.com/10.1557/mrs2007.29, doi:10.1557/mrs2007.29.

+

Elvira Fortunato, David Ginley, Hideo Hosono, and David C. Paine. Transparent Conducting Oxides for Photovoltaics. MRS Bulletin, 32(3):242–247, 3 2007. doi:10.1557/mrs2007.29.

-
+
[86] -

Andreas Stadler. Transparent Conducting Oxides—An Up-To-Date Overview. Materials, 5(12):661–683, 4 2012. URL: http://www.mdpi.com/1996-1944/5/4/661, doi:10.3390/ma5040661.

+

Andreas Stadler. Transparent Conducting Oxides—An Up-To-Date Overview. Materials, 5(12):661–683, 4 2012. doi:10.3390/ma5040661.

[87] -

Albert de Jamblinne de Meux, Ajay Bhoolokam, Geoffrey Pourtois, Jan Genoe, and Paul Heremans. Oxygen vacancies effects in a‐IGZO: Formation mechanisms, hysteresis, and negative bias stress effects. physica status solidi (a), 214(6):1600889, 6 2017. URL: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201600889, doi:10.1002/pssa.201600889.

+

Albert de Jamblinne de Meux, Ajay Bhoolokam, Geoffrey Pourtois, Jan Genoe, and Paul Heremans. Oxygen vacancies effects in a‐IGZO: Formation mechanisms, hysteresis, and negative bias stress effects. physica status solidi (a), 214(6):1600889, 6 2017. doi:10.1002/pssa.201600889.

[88] -

Lishu Liu, Zengxia Mei, Aihua Tang, Alexander Azarov, Andrej Kuznetsov, Qi-Kun Xue, and Xiaolong Du. Oxygen vacancies: The origin of n -type conductivity in ZnO. Physical Review B, 93(23):235305, 6 2016. URL: https://link.aps.org/doi/10.1103/PhysRevB.93.235305, doi:10.1103/PhysRevB.93.235305.

+

Lishu Liu, Zengxia Mei, Aihua Tang, Alexander Azarov, Andrej Kuznetsov, Qi-Kun Xue, and Xiaolong Du. Oxygen vacancies: The origin of n -type conductivity in ZnO. Physical Review B, 93(23):235305, 6 2016. doi:10.1103/PhysRevB.93.235305.

[89] -

Gururaj V. Naik, Jongbum Kim, and Alexandra Boltasseva. Oxides and nitrides as alternative plasmonic materials in the optical range. Optical Materials Express, 1(6):1090, 10 2011. URL: https://opg.optica.org/ome/abstract.cfm?uri=ome-1-6-1090, doi:10.1364/OME.1.001090.

+

Gururaj V. Naik, Jongbum Kim, and Alexandra Boltasseva. Oxides and nitrides as alternative plasmonic materials in the optical range. Optical Materials Express, 1(6):1090, 10 2011. doi:10.1364/OME.1.001090.

-
+
[90] -

Yu Wang, Antonio Capretti, and Luca Dal Negro. Wide tuning of the optical and structural properties of alternative plasmonic materials. Optical Materials Express, 5(11):2415, 11 2015. URL: https://opg.optica.org/abstract.cfm?URI=ome-5-11-2415, doi:10.1364/OME.5.002415.

+

Yu Wang, Antonio Capretti, and Luca Dal Negro. Wide tuning of the optical and structural properties of alternative plasmonic materials. Optical Materials Express, 5(11):2415, 11 2015. doi:10.1364/OME.5.002415.

[91] -

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué. Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths. Applied Physics Letters, 102(17):171103, 4 2013. URL: https://pubs.aip.org/aip/apl/article/126011, doi:10.1063/1.4802901.

+

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué. Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths. Applied Physics Letters, 102(17):171103, 4 2013. doi:10.1063/1.4802901.

[92]

Gururaj V. Naik, Vladimir M. Shalaev, and Alexandra Boltasseva. Alternative Plasmonic Materials: Beyond Gold and Silver. Advanced Materials, 25(24):3264–3294, 6 2013. doi:10.1002/adma.201205076.

-
+
[93] -

Viktoriia E. Babicheva, Alexandra Boltasseva, and Andrei V. Lavrinenko. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics, 4(1):165–185, 6 2015. URL: https://www.degruyter.com/document/doi/10.1515/nanoph-2015-0004/html, doi:10.1515/NANOPH-2015-0004/MACHINEREADABLECITATION/RIS.

+

Viktoriia E. Babicheva, Alexandra Boltasseva, and Andrei V. Lavrinenko. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics, 4(1):165–185, 6 2015. doi:10.1515/NANOPH-2015-0004.

-
+
[94] -

Wallace Jaffray, Soham Saha, Vladimir M. Shalaev, Alexandra Boltasseva, and Marcello Ferrera. Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Advances in Optics and Photonics, 14(2):148, 6 2022. URL: https://opg.optica.org/abstract.cfm?URI=aop-14-2-148, doi:10.1364/AOP.448391.

+

Wallace Jaffray, Soham Saha, Vladimir M. Shalaev, Alexandra Boltasseva, and Marcello Ferrera. Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Advances in Optics and Photonics, 14(2):148, 6 2022. doi:10.1364/AOP.448391.

-
+
[95] -

Eyal Feigenbaum, Kenneth Diest, and Harry A. Atwater. Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies. Nano Letters, 10(6):2111–2116, 6 2010. URL: https://pubs.acs.org/doi/10.1021/nl1006307, doi:10.1021/nl1006307.

+

Eyal Feigenbaum, Kenneth Diest, and Harry A. Atwater. Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies. Nano Letters, 10(6):2111–2116, 6 2010. doi:10.1021/nl1006307.

-
+
[98]

Zhaolin Lu, Wangshi Zhao, and Kaifeng Shi. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics Journal, 4(3):735–740, 2012. doi:10.1109/JPHOT.2012.2197742.

@@ -689,11 +689,11 @@

Bibliography [100] -

A. V. Krasavin and A. V. Zayats. Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator. Physical Review Letters, 109(5):053901, 7 2012. URL: https://link.aps.org/doi/10.1103/PhysRevLett.109.053901, doi:10.1103/PhysRevLett.109.053901.

+

A. V. Krasavin and A. V. Zayats. Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator. Physical Review Letters, 109(5):053901, 7 2012. doi:10.1103/PhysRevLett.109.053901.

[101] -

Viktoriia E. Babicheva and Andrei V. Lavrinenko. Plasmonic modulator optimized by patterning of active layer and tuning permittivity. Optics Communications, 285(24):5500–5507, 11 2012. URL: https://linkinghub.elsevier.com/retrieve/pii/S0030401812008425, doi:10.1016/j.optcom.2012.07.117.

+

Viktoriia E. Babicheva and Andrei V. Lavrinenko. Plasmonic modulator optimized by patterning of active layer and tuning permittivity. Optics Communications, 285(24):5500–5507, 11 2012. doi:10.1016/j.optcom.2012.07.117.

-
+
[109] -

Sun Il Kim, Junghyun Park, Byung Gil Jeong, Duhyun Lee, Ki Yeon Yang, Yong Young Park, Kyoungho Ha, and Hyuck Choo. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics, 11(11):2719–2726, 6 2022. URL: https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0664/html, doi:10.1515/NANOPH-2021-0664.

+

Sun Il Kim, Junghyun Park, Byung Gil Jeong, Duhyun Lee, Ki Yeon Yang, Yong Young Park, Kyoungho Ha, and Hyuck Choo. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics, 11(11):2719–2726, 6 2022. doi:10.1515/NANOPH-2021-0664.

[110] @@ -737,11 +737,11 @@

Bibliography [112] -

Yuhua Chang, Jingxuan Wei, and Chengkuo Lee. Metamaterials – from fundamentals and MEMS tuning mechanisms to applications. Nanophotonics, 9(10):3049–3070, 8 2020. URL: https://www.degruyter.com/document/doi/10.1515/nanoph-2020-0045/html, doi:10.1515/nanoph-2020-0045.

+

Yuhua Chang, Jingxuan Wei, and Chengkuo Lee. Metamaterials – from fundamentals and MEMS tuning mechanisms to applications. Nanophotonics, 9(10):3049–3070, 8 2020. doi:10.1515/nanoph-2020-0045.

[113] -

Zang Guanxing, Ziji Liu, Wenjun Deng, and Weiming Zhu. Reconfigurable metasurfaces with mechanical actuations: towards flexible and tunable photonic devices. Journal of Optics, 23(1):013001, 1 2021. URL: https://iopscience.iop.org/article/10.1088/2040-8986/abcc52, doi:10.1088/2040-8986/abcc52.

+

Zang Guanxing, Ziji Liu, Wenjun Deng, and Weiming Zhu. Reconfigurable metasurfaces with mechanical actuations: towards flexible and tunable photonic devices. Journal of Optics, 23(1):013001, 1 2021. doi:10.1088/2040-8986/abcc52.

[114] @@ -757,7 +757,7 @@

Bibliography [117] -

Shaowei He, Huimin Yang, Yunhui Jiang, Wenjun Deng, and Weiming Zhu. Recent Advances in MEMS Metasurfaces and Their Applications on Tunable Lens. Micromachines, 10(8):505, 7 2019. URL: https://www.mdpi.com/2072-666X/10/8/505, doi:10.3390/mi10080505.

+

Shaowei He, Huimin Yang, Yunhui Jiang, Wenjun Deng, and Weiming Zhu. Recent Advances in MEMS Metasurfaces and Their Applications on Tunable Lens. Micromachines, 10(8):505, 7 2019. doi:10.3390/mi10080505.

[118] @@ -765,15 +765,15 @@

Bibliography [119] -

Christopher A. Dirdal, Paul C. V. Thrane, Firehun T. Dullo, Jo Gjessing, Anand Summanwar, and Jon Tschudi. MEMS-tunable dielectric metasurface lens using thin-film PZT for large displacements at low voltages. Optics Letters, 47(5):1049, 3 2022. URL: https://opg.optica.org/abstract.cfm?URI=ol-47-5-1049, doi:10.1364/OL.451750.

+

Christopher A. Dirdal, Paul C. V. Thrane, Firehun T. Dullo, Jo Gjessing, Anand Summanwar, and Jon Tschudi. MEMS-tunable dielectric metasurface lens using thin-film PZT for large displacements at low voltages. Optics Letters, 47(5):1049, 3 2022. doi:10.1364/OL.451750.

-
+
[120] -

Aaron L. Holsteen, Ahmet Fatih Cihan, and Mark L. Brongersma. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science, 365(6450):257–260, 7 2019. URL: https://www.science.org/doi/10.1126/science.aax5961, doi:10.1126/science.aax5961.

+

Aaron L. Holsteen, Ahmet Fatih Cihan, and Mark L. Brongersma. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science, 365(6450):257–260, 7 2019. doi:10.1126/science.aax5961.

[121] -

Prakash Pitchappa, Chong Pei Ho, You Qian, Lokesh Dhakar, Navab Singh, and Chengkuo Lee. Microelectromechanically tunable multiband metamaterial with preserved isotropy. Scientific Reports, 5(1):11678, 12 2015. URL: http://www.nature.com/articles/srep11678, doi:10.1038/srep11678.

+

Prakash Pitchappa, Chong Pei Ho, You Qian, Lokesh Dhakar, Navab Singh, and Chengkuo Lee. Microelectromechanically tunable multiband metamaterial with preserved isotropy. Scientific Reports, 5(1):11678, 12 2015. doi:10.1038/srep11678.

diff --git a/intro.html b/intro.html index 1169fb6..d897ce0 100644 --- a/intro.html +++ b/intro.html @@ -359,17 +359,17 @@

Main project resultsThe project has focused on two major scientific challenges, i.e. the development of the metamaterial and the realization of a high-quality BTO waveguide.

Metamaterial development#

-

We have been able to fabricate the required metamaterial in a standard 300 mm cleanroom [1]. We have also modeled the obtained electrical fields in the BTO waveguides, both along the vertical axis and in the horizontal plane [2, 3]. The knowledge of the Pockels coefficients both along the a-axis and the c-axis enables subsequently to describe a detailed algorithm for the hologram generation [1].

+

We have been able to fabricate the required metamaterial in a standard 300 mm cleanroom [1]. We have also modeled the obtained electrical fields in the BTO waveguides, both along the vertical axis and in the horizontal plane [2, 3]. The knowledge of the Pockels coefficients both along the a-axis and the c-axis enables subsequently to describe a detailed algorithm for the hologram generation [1].

High-quality BTO waveguide#

-

We have realized high-quality BTO layers [4] on Silicon wafers by both Molecular Beam Epitaxy (MBE) and Pulsed Laser Deposition (PLD) [5, 6]. Both technologies required an SrTiO3 interface layer for lattice matching (see [7, 8]).

-

The work on the BTO waveguides is been summarized in the PhD thesis of Tsang-Hsuan Wang [9].

+

We have realized high-quality BTO layers [4] on Silicon wafers by both Molecular Beam Epitaxy (MBE) and Pulsed Laser Deposition (PLD) [5, 6]. Both technologies required an SrTiO3 interface layer for lattice matching (see [7, 8]).

+

The work on the BTO waveguides is been summarized in the PhD thesis of Tsang-Hsuan Wang [9].

Remaining challenges en further work#

-

The control of the BTO waveguide at 100 nm resolution requires close interaction with the metamaterial. Our simulations (see [3]) indicate that when the separation between the BTO and the metamaterial goes beyond 5 nm, the effective control is too low for an efficient demonstrator. Therefor, we targeted an oxide-oxide bonding process yielding an separation below 2 nm. Although other demonstrators of oxide-oxide bonding, also in our lab, have indicated that this should be in reach, the practical between the BTO wafer and the metamaterial wafer has not yet been possible.

+

The control of the BTO waveguide at 100 nm resolution requires close interaction with the metamaterial. Our simulations (see [3]) indicate that when the separation between the BTO and the metamaterial goes beyond 5 nm, the effective control is too low for an efficient demonstrator. Therefor, we targeted an oxide-oxide bonding process yielding an separation below 2 nm. Although other demonstrators of oxide-oxide bonding, also in our lab, have indicated that this should be in reach, the practical between the BTO wafer and the metamaterial wafer has not yet been possible.

Main funding info#

diff --git a/searchindex.js b/searchindex.js index d5dcc39..b1c221a 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"Acousto-Optics": [[4, "acousto-optics"]], "Bibliography": [[2, null]], "Carrier Injection": [[4, "carrier-injection"]], "Conferences": [[0, "conferences"], [0, "id1"]], "Core Team": [[1, "core-team"]], "Doped Lithium Niobate": [[4, "doped-lithium-niobate"]], "ERC Publications": [[0, null]], "ERC Team": [[1, null]], "High-quality BTO waveguide": [[3, "high-quality-bto-waveguide"]], "Introduction": [[3, "introduction"]], "Journal papers": [[0, "journal-papers"], [0, "journalpapers"]], "Liquid Crystals": [[4, "liquid-crystals"]], "Main funding info": [[3, "main-funding-info"]], "Main project results": [[3, "main-project-results"]], "Metamaterial development": [[3, "metamaterial-development"]], "Micro-electromechanical Systems": [[4, "micro-electromechanical-systems"]], "Other contributors": [[1, "other-contributors"]], "PhD students": [[1, "phd-students"], [1, "phdstaff"]], "PhD thesis": [[0, "phd-thesis"], [0, "phd"]], "Principal Investigator": [[1, "principal-investigator"]], "Remaining challenges en further work": [[3, "remaining-challenges-en-further-work"]], "Selected implementation in the Video holography ERC project": [[3, "selected-implementation-in-the-video-holography-erc-project"]], "Senior academic staff": [[1, "staff"]], "Senior academic staff in the team": [[1, "senior-academic-staff-in-the-team"]], "Short history of Holography": [[3, "short-history-of-holography"]], "State-of-the-Art overview: Modulation mechanisms for dynamic holography": [[4, null]], "Target applications for holography": [[3, "target-applications-for-holography"]], "Thermo-Optics": [[4, "thermo-optics"]], "Video Holography: summary": [[3, null]]}, "docnames": ["Publications", "Team", "bib", "intro", "sota"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["Publications.md", "Team.md", "bib.md", "intro.md", "sota.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [0, 2, 4], "0": [0, 2, 4], "000005": 2, "00020": 2, "00032": 2, "0004": 2, "000411": 2, "000491": 2, "000557": 2, "000689": 2, "000855": 2, "000915": 2, "001": [0, 2], "001090": 2, "001129": 2, "001955": 2, "0019980": [0, 2], "002264": 2, "002415": 2, "002499": 2, "002592": 2, "00332": 2, "003653": 2, "0045": 2, "004575": 2, "004740": 2, "00787": 2, "008879": 2, "0091": 2, "01": [0, 2], "01191060mtgab": [0, 2], "013001": 2, "013655": 2, "014680398244902": 2, "018": 2, "019": 2, "0190": 2, "019029": 2, "020": 2, "020831": 2, "021": 2, "0213": 2, "022": 2, "023": 2, "026387": 2, "03155": 2, "032970": 2, "053901": 2, "06201": 2, "0664": 2, "07": 2, "074": 3, "0802": 2, "0c01269": 2, "0c01599": 2, "1": [0, 1, 2, 3, 4], "10": [0, 2, 3, 4], "100": [2, 3, 4], "1002": 2, "1004": 2, "101": [2, 4], "1016": [0, 2], "102": [2, 4], "1021": [0, 2], "103": [2, 4], "1038": 2, "1039": 2, "104": [2, 4], "104104": [0, 2], "1049": 2, "105": [2, 4], "1058847": 2, "106": [2, 4], "1060": [0, 2], "1063": [0, 2], "107": [2, 4], "108": [2, 4], "1080": 2, "1088": 2, "109": [2, 4], "1090": 2, "10nm": 4, "11": [0, 2, 4], "110": [2, 4], "1103": 2, "1109": 2, "111": [2, 4], "11112": 2, "111603": 2, "1117": [0, 2], "112": [2, 4], "1126": 2, "1129": 2, "113": [2, 4], "114": [2, 4], "1143": 2, "11484": [0, 2], "114840d": [0, 2], "1149": [0, 2], "115": [2, 4], "116": [2, 4], "11678": 2, "117": [2, 4], "118": [2, 4], "1186": 2, "119": [2, 4], "12": [0, 2, 4], "120": [2, 4], "121": [2, 4], "122": [2, 4], "123": [2, 4], "124": [2, 4], "125": [2, 4], "126011": 2, "126524": [0, 2], "128": [0, 2], "13": [0, 2, 4], "131919": 2, "1364": [0, 2], "13655": 2, "14": [2, 4], "148": 2, "15": [0, 2, 4], "150": 4, "1515": 2, "1532": 2, "1535": 2, "1544": 2, "1550": 2, "1550nm": 4, "1557": 2, "156": 4, "157": 2, "15754": 2, "16": [0, 2, 4], "160": 4, "1600716": 2, "1600889": 2, "165": 2, "1652580": 2, "1658195": 2, "166": 2, "167280": 2, "1696": 2, "17": [2, 4], "171103": 2, "1754607": 2, "17h00": 2, "18": [2, 4], "180": 4, "180009": 2, "18000901": 2, "18000925": 2, "1800835": 2, "1803": 2, "1810": 2, "1844": 2, "185": 2, "186": 2, "188783": 2, "19": [2, 4], "1900175": 2, "1901182": 2, "19029": 2, "1944": 2, "1947": 3, "195": 2, "1955": 2, "1960": 3, "1966": 2, "1968": 2, "1969": 2, "1970": 4, "1973": 2, "1989": 2, "199": 2, "1990": 4, "1992": 2, "1993": 2, "199323": 2, "1996": 2, "1997thermo": 2, "1998": 2, "1d": 4, "2": [1, 2, 3, 4], "20": [2, 4], "2000": 2, "2001": 2, "2006": 2, "2007": 2, "2008": 2, "2010": 2, "2011": 2, "2012": 2, "201205076": 2, "2013": 2, "2014": 2, "2015": 2, "201500676": 2, "2016": [2, 3], "201600106": 2, "201600716": 2, "201600889": 2, "2017": [2, 3], "201700733": 2, "201703878": 2, "2018": [0, 2], "201800835": 2, "201806692": 2, "2019": 2, "201900175": 2, "201901182": 2, "2020": [0, 2, 3], "2021": [0, 2], "202100369": 2, "2022": [0, 2], "202200051": 2, "2023": [0, 2, 3], "2024": [0, 2], "2040": 2, "2072": 2, "207402": 2, "20831": 2, "20th": [0, 2], "21": [2, 4], "2100369": 2, "2111": 2, "2116": 2, "21261": 2, "21302": 2, "214": 2, "21648": 2, "21655": 2, "21738": 2, "2197742": 2, "21st": 4, "22": [2, 4], "2200051": 2, "223": 2, "225": 2, "2264": 2, "23": [2, 4], "2304": 2, "235305": 2, "23rd": [0, 2], "24": [2, 4], "2415": 2, "242": 2, "2430485": 2, "247": 2, "2499": 2, "25": [2, 4], "252": 2, "256": 2, "2568032": [0, 2], "257": 2, "2592": 2, "26": [2, 4], "260": 2, "2632022": 2, "26387": 2, "27": [2, 4], "2719": 2, "2726": 2, "28": [2, 4], "285": 2, "29": [2, 4], "290": 2, "29026": 2, "292": 2, "29374": 2, "2957": 2, "2963": 2, "2d": [2, 4], "3": [0, 2, 3, 4], "30": [2, 4], "300": [1, 2, 3, 4], "300mm": 1, "3030": 3, "3049": 2, "3070": 2, "31": [2, 3, 4], "313": 2, "31429": 2, "316": 2, "317": 2, "32": [2, 4], "322": 2, "3264": 2, "3294": 2, "32970": 2, "33": [2, 4], "332486": 2, "3389": 2, "3390": 2, "3396": 2, "34": [2, 4], "34133": 2, "3427429": 2, "3470": 2, "3475": 2, "35": [2, 4], "355200": 4, "36": [2, 4], "360": 4, "365": 2, "3653": 2, "37": [2, 4], "374": 2, "38": [2, 4], "381": 2, "381484": 2, "383877": 2, "39": [2, 4], "3901": 2, "3912": 2, "393": 2, "3966": 2, "3969": 2, "3c01401": 0, "4": [0, 2, 3, 4], "40": [2, 4], "400441": 2, "401486": 2, "407": 2, "41": [2, 4], "411": 2, "41152": 2, "413": 2, "42": [2, 4], "43": [2, 4], "4308": 2, "4315": 2, "431622": 2, "44": [2, 4], "448391": 2, "45": [2, 4], "451750": 2, "4575": 2, "46": [2, 4], "47": [2, 4], "4740": 2, "48": [2, 4], "4802901": 2, "481396": [0, 2], "4858": 2, "4865": 2, "49": [2, 4], "491": 2, "493": 2, "498": 2, "499": 3, "5": [0, 2, 3, 4], "50": [2, 4], "500": [3, 4], "5000": 2, "500n": 4, "5018865": 2, "502": 2, "505": 2, "51": [2, 4], "52": [2, 4], "529": 0, "53": [2, 4], "5319": 2, "5325": 2, "536": 0, "54": [2, 4], "541": 2, "547": 2, "548": 2, "5496": 2, "55": [2, 4], "5500": 2, "5507": 2, "551": 2, "5514": 2, "557": 2, "56": [2, 4], "567": 2, "57": [2, 4], "575": 2, "58": [2, 4], "5816": 2, "582": [0, 2], "586087": 2, "59": [2, 4], "5b00723": 2, "5nm": 4, "5v": 4, "6": [2, 3, 4], "60": [2, 4], "600": 4, "600nm": 4, "61": [2, 4], "62": [0, 2, 4], "620": 2, "63": [2, 4], "64": [2, 4], "6450": 2, "6463": 2, "6468": 2, "65": [2, 4], "66": [2, 4], "661": 2, "665": 2, "666x": 2, "668": 2, "6686": 2, "67": [2, 4], "6732": 2, "68": [2, 4], "683": 2, "689": 2, "69": [2, 4], "6912": 2, "6920": 2, "699": 2, "6b00555": 2, "6b04378": 2, "7": [2, 3], "70": [2, 4], "71": [2, 4], "714": 2, "72": [2, 4], "73": [2, 4], "735": 2, "74": [2, 4], "740": 2, "742299": 3, "7431": 2, "7454": 2, "75": [2, 4], "752": 2, "754": 2, "76": [2, 4], "77": [2, 4], "78": [2, 4], "79": [2, 4], "7973": 2, "8": [2, 3, 4], "80": [2, 4], "800nm": 4, "81": [2, 4], "82": [2, 4], "83": [2, 4], "84": [2, 4], "85": [2, 4], "86": [2, 4], "8660": 2, "87": [2, 4], "871": 2, "88": [2, 4], "8879": 2, "8898": 2, "89": [2, 4], "8986": 2, "8b00351": 2, "8b01014": 2, "9": [2, 3, 4], "90": [2, 4], "91": [2, 4], "915": 2, "92": [2, 4], "93": [2, 4], "937": 2, "94": [2, 4], "943": 2, "95": [2, 4], "96": [2, 4], "97": [2, 4], "9765089": 2, "98": [2, 4], "986": 2, "99": [2, 4], "994": 2, "A": [0, 2, 3, 4], "As": [3, 4], "At": 4, "By": 4, "For": [3, 4], "In": [2, 4], "It": [1, 4], "Its": [0, 2], "Near": 2, "Not": 4, "Of": 4, "On": [0, 4], "One": [3, 4], "That": [3, 4], "The": [0, 1, 2, 3, 4], "Their": [2, 4], "There": 3, "These": [3, 4], "To": [2, 3, 4], "With": 3, "_": 2, "a180629000007": 2, "aar6768": 2, "aaron": 2, "aat3100": 2, "aax5961": 2, "ab": 2, "abbrevi": 4, "abcc52": 2, "abdollahramezani": 2, "abl": [3, 4], "about": 4, "abov": [3, 4], "absent": 4, "absorb": [2, 4], "absorpt": [2, 4], "abstract": [0, 2], "ac": [0, 2], "accompani": 4, "accumul": 4, "achiev": 4, "acoleyen": 2, "acoust": [3, 4], "acousto": 2, "acoustoopt": 2, "across": 2, "acsnano": 2, "acsphoton": [0, 2], "act": 4, "activ": [0, 2, 4], "actual": 4, "actuat": [2, 4], "adapt": 4, "add": 4, "addit": 4, "addition": 4, "address": [2, 4], "adequ": 4, "adfm": 2, "adg": 3, "adi": 2, "adibi": 2, "adma": 2, "adom": 2, "adpr": 2, "adv": 2, "advanc": [0, 2, 4], "advent": 3, "after": 4, "afterward": 4, "again": 4, "ago": 4, "ahm": [0, 2], "ahmet": 2, "aihua": 2, "aim": 4, "aip": 2, "aircraft": 4, "ajai": 2, "akari": 2, "akiyama": 2, "al": 2, "albert": 2, "aleksei": 2, "alena": 2, "alex": 2, "alexand": 2, "alexandra": 2, "alexej": 2, "algorithm": 3, "ali": 2, "align": 4, "all": [1, 2], "allow": [3, 4], "almost": 4, "alok": 2, "along": [3, 4], "also": [1, 3, 4], "alter": [3, 4], "altern": [2, 4], "although": 3, "aluminium": 4, "alwai": 4, "ami": 2, "amir": 2, "amorph": 4, "amount": [3, 4], "amplif": 4, "amplitud": [2, 4], "amr": 2, "an": [2, 3, 4], "analog": [2, 3], "anand": 2, "andrea": 2, "andrei": 2, "andrej": 2, "angl": [2, 4], "angular": 2, "ani": 4, "anisotrop": 2, "ann": 2, "anneal": 4, "anomal": 2, "anopchenko": 2, "antenna": [2, 4], "antoni": 2, "antonio": 2, "ao": [0, 2], "aop": 2, "ap": 2, "apl": 2, "appli": [0, 2, 3, 4], "applic": [0, 2, 4], "approach": [2, 4], "april": 0, "ar": [3, 4], "arash": 2, "arbabi": 2, "architectur": [3, 4], "area": 3, "arian": 2, "around": [3, 4], "arrai": [2, 4], "artefact": 4, "artemov": 2, "articl": 2, "artifact": 2, "artist": 4, "artur": [0, 2], "arxiv": 2, "ashkin": 2, "aspx": 2, "assist": 2, "atom": 4, "atorf": 2, "attain": 4, "attempt": 4, "attribut": 4, "atwat": 2, "augment": 3, "august": [0, 2], "author": 2, "automat": 4, "automot": 3, "avail": [3, 4], "axi": [3, 4], "ayliff": 2, "azarov": 2, "b": [2, 4], "baba": 2, "babicheva": 2, "back": 4, "backbon": 4, "backplan": 4, "badosa": 2, "baet": [0, 2], "bagheri": 2, "bai": 2, "baizh": 2, "balein": 2, "ballman": 2, "bandwidth": 2, "bandyopadhyai": 2, "banknot": 3, "baraba": 2, "barium": [0, 2], "base": [0, 2, 3, 4], "basi": 3, "batio": 0, "batio3": [0, 2], "beam": [0, 2, 3, 4], "beamsteer": 2, "becom": 4, "been": [0, 1, 3, 4], "begin": 4, "behaviour": 4, "behrad": 2, "being": 4, "belgium": [0, 2], "below": 3, "benelux": 0, "benfeng": 2, "bernhard": 2, "best": 4, "better": 4, "between": [1, 3, 4], "beyond": [2, 3], "bhoolokam": 2, "bia": [2, 4], "biaob": 2, "bias": 4, "bifunct": 2, "bingzhao": 2, "blanch": 2, "blue": [3, 4], "bo": 2, "bogdanowicz": [0, 2], "bola": 2, "boltasseva": 2, "bond": [1, 3], "bossard": 2, "both": [3, 4], "bottom": [3, 4], "bove": 2, "boyd": 2, "bragg": 4, "breakthrough": 3, "brener": 2, "brent": 2, "bridg": 4, "bright": 2, "bring": 4, "britton": 2, "broadband": 2, "brongersma": 2, "bronnen": 2, "brush": 4, "brussel": 0, "bto": 1, "budget": 3, "build": 1, "built": 4, "bulletin": 2, "bum": 2, "burgo": 2, "buse": 2, "byeol": 2, "byoung": 2, "byung": 2, "c": [0, 2, 3, 4], "c8nr04471f": 2, "cai": 2, "caihong": 2, "calcul": 4, "california": [0, 2], "call": 4, "came": 3, "can": [0, 3, 4], "candid": 4, "cannot": 4, "cantilev": 4, "cao": 2, "capabl": [2, 4], "capasso": 2, "capretti": 2, "card": 3, "carefulli": 3, "carlo": 2, "case": 4, "caus": [2, 4], "caviti": [2, 4], "cedric": 0, "celano": [0, 2], "cell": 4, "centimetr": 3, "centuri": 4, "certain": 4, "cfm": 2, "chalcogenid": 2, "challeng": 4, "chan": 2, "chander": 2, "chang": [2, 3, 4], "changgyun": 2, "channel": [3, 4], "chao": 2, "chapter": 4, "character": [0, 1, 2], "characterist": 4, "charg": [1, 4], "chen": 2, "cheng": 2, "chengkuo": 2, "chenglong": 2, "chennupati": 2, "chi": 2, "chieh": 2, "chigrin": 2, "chih": 2, "chip": [0, 2, 4], "cho": 2, "choi": 2, "chong": 2, "chongwen": 2, "choo": 2, "chorsi": 2, "christian": 2, "christoph": 2, "chu": 2, "chun": [0, 2], "chunmei": 2, "cihan": 2, "cir": 4, "circ": [2, 4], "circuit": 2, "clad": [3, 4], "clara": 2, "clark": 2, "classifi": 4, "cleanroom": [1, 3], "clear": 3, "clement": [0, 1, 2], "clemmen": 0, "click": 3, "close": 3, "cm": 4, "cmo": 4, "cmp": 1, "coeffici": [3, 4], "coher": 3, "coll": 2, "collect": 4, "collinear": 2, "color": [2, 3, 4], "colour": 4, "com": 2, "combin": [3, 4], "come": 3, "commerci": 4, "commonli": 4, "commun": [2, 3], "compani": 4, "compar": 4, "compat": 4, "complementari": 4, "complet": [2, 3, 4], "complex": [2, 3, 4], "compon": [2, 4], "composit": 4, "compress": 4, "compris": 3, "comput": [0, 2], "conard": [0, 2], "conceiv": 1, "concentr": 4, "concept": [3, 4], "condit": [1, 4], "conduct": [0, 2, 3, 4], "conferenc": 3, "cong": 2, "conni": 2, "consequ": [3, 4], "consid": [3, 4], "constant": [3, 4], "constitu": 4, "construct": [0, 4], "consumpt": 4, "contact": 3, "contain": 4, "context": 4, "contract": 3, "contrast": 2, "control": [0, 2, 3, 4], "converg": 2, "convers": [2, 4], "cool": 4, "coolbaugh": 2, "core": [3, 4], "correspond": 4, "costa": 2, "could": 4, "coupl": [2, 4], "coupler": [0, 2, 4], "cover": 4, "craighead": 2, "creat": [3, 4], "creation": 4, "credit": 3, "croe": [0, 1, 2, 4], "crossland": 2, "crucial": 4, "crystal": [0, 2], "crystallin": [0, 2, 4], "cui": 2, "current": 4, "custom": [0, 2], "czech": 0, "d": [2, 4], "dae": 2, "daichi": 2, "daili": 1, "daisuk": 2, "dal": 2, "dalir": 2, "damag": 4, "dana": 2, "daniel": 2, "dape": 2, "dash": 4, "data": 4, "date": [2, 4], "david": 2, "de": [0, 2], "deanna": 2, "decad": 4, "decemb": 0, "decker": 2, "deep": [1, 4], "defin": 4, "deflect": 2, "deflector": [2, 4], "defocus": 2, "degre": 4, "degruyt": 2, "dehydrogen": 4, "delaland": 2, "delta": 4, "demonstr": [2, 3], "deng": 2, "deniz": 1, "denni": 3, "densiti": 4, "depend": [2, 4], "depict": 3, "deposit": [0, 2, 3, 4], "depreng": 2, "depth": 4, "describ": [3, 4], "descript": 0, "deshmukh": 2, "design": [1, 4], "desir": 4, "despit": 3, "detail": [2, 3], "detect": 4, "detector": 4, "develop": 2, "devic": [1, 2, 4], "dhakar": 2, "diana": 1, "diaz": 2, "diego": [0, 2], "dielectr": [2, 3, 4], "diest": 2, "differ": [1, 4], "diffract": [2, 4], "dimension": [2, 3, 4], "din": 2, "dioxid": [2, 4], "dipol": 4, "dirdal": 2, "direct": 3, "directli": 4, "director": 1, "disclos": 4, "dispers": 2, "displac": [2, 4], "displai": [0, 2, 4], "distinct": 4, "dive": 1, "dmitri": 2, "do": [2, 4], "document": 2, "doe": [2, 4], "doi": [0, 2, 3], "dolan": 2, "dom": 2, "domain": [3, 4], "done": [3, 4], "dong": 2, "dopant": 4, "dope": 2, "dorian": 2, "dorschner": 2, "doubl": 2, "doublet": 4, "doubli": 2, "dougla": 2, "down": 4, "downscal": 4, "dr": 1, "dragomir": 2, "drive": [1, 3, 4], "driven": [2, 3, 4], "drude": 4, "du": 2, "dual": 2, "due": 4, "dug": 2, "duhyun": 2, "dullo": 2, "dx": 2, "dye": 2, "dynam": [2, 3], "dziedzic": 2, "e": [0, 2, 3, 4], "e213": 2, "each": 4, "earli": 4, "earliest": 4, "eas": 4, "easi": 4, "easili": 4, "ec": [0, 2], "ecod": 4, "econom": 3, "editor": 2, "educ": 3, "edward": 2, "effect": [0, 2, 3, 4], "effici": [2, 3, 4], "effort": [3, 4], "eftekhar": 2, "ehsan": 2, "either": 4, "el": 2, "elabor": [0, 1, 3], "elast": 4, "electr": [2, 3, 4], "electro": [0, 2, 4], "electroabsorpt": 2, "electrod": [0, 2, 3, 4], "electromagnet": [2, 4], "electron": [2, 3, 4], "electrostat": 4, "element": 4, "elight": 2, "ellenbogen": 2, "ellipsometri": 4, "elsevi": 2, "elvira": 2, "embed": [2, 4], "emerg": 4, "emitt": 4, "emploi": 4, "empti": 4, "enabl": [2, 3, 4], "enclos": 4, "encount": 4, "encrypt": 2, "end": [3, 4], "engin": [2, 3], "enhanc": 2, "ensur": 4, "entir": 4, "enz": 2, "epitaxi": [0, 2, 3], "epsilon": [2, 4], "eras": 4, "erc": 4, "eric": 2, "erin": 2, "erman": 2, "ernstoff": 2, "errando": 2, "especi": 4, "essenti": 3, "establish": 4, "estela": 2, "etc": 3, "etch": 3, "eun": 2, "eur": 3, "evanesc": [0, 3], "even": 4, "eventu": 4, "evgenia": 2, "evolut": 3, "evolutionari": 2, "exampl": 4, "excel": 4, "except": 4, "exchang": 2, "excit": 4, "execut": 1, "exist": 3, "exit": 4, "expans": 4, "expect": 0, "experiment": 2, "expert": 1, "explor": 0, "expos": 4, "express": 2, "extract": 4, "extrem": 4, "eyal": 2, "ezhov": 2, "f": [2, 4], "f14": [0, 2], "f20": 2, "fabric": [2, 3, 4], "fai": 2, "faiyaz": 2, "fall": [0, 2, 4], "faraji": 2, "faraon": 2, "farfield": 4, "fast": [3, 4], "faster": 4, "fatih": 2, "favalora": 2, "favia": [0, 2], "featur": 4, "feb": [0, 2], "februari": 0, "fed": 4, "federico": 2, "fei": 2, "feigenbaum": 2, "feng": 2, "fern": 2, "ferraro": 2, "ferrera": 2, "fiber": 2, "field": [0, 2, 3, 4], "fig": [3, 4], "figur": 2, "file": 2, "fill": 3, "film": [0, 2, 3, 4], "filter": 2, "fine": 4, "firehun": 2, "first": [2, 3, 4], "fishnet": [2, 4], "flat": [2, 4], "fleet": 2, "flexibl": 2, "fo": 4, "focus": [3, 4], "foot": 4, "forc": 4, "form": [3, 4], "format": 2, "fortunato": 2, "found": [0, 3, 4], "fphy": 2, "franc": [0, 2], "frank": 2, "fraser": 2, "free": [2, 4], "frequenc": [2, 4], "friedman": 2, "from": [0, 1, 2, 3, 4], "front": 2, "frontier": 2, "full": [2, 3, 4], "fulli": 3, "function": [0, 2], "fundament": 2, "further": 4, "futur": 3, "g": [2, 3, 4], "gabor": 3, "gain": 4, "gallium": 4, "gaofeng": 2, "gate": [2, 4], "ge": 2, "ge_2sb_2te_5": 4, "gehlhaar": [0, 1, 2], "geivandov": 2, "gendt": [0, 2], "gener": [0, 2, 3, 4], "geno": [0, 1, 2], "geoffrei": 2, "georgia": 2, "gerald": 2, "geumbong": 2, "ghazaleh": 2, "gholipour": 2, "gi": 2, "gil": 2, "ginlei": 2, "given": 4, "gjess": 2, "glembocki": 2, "go": 4, "goal": 3, "goe": 3, "goetz": 2, "gold": [2, 4], "good": [3, 4], "gorkunov": 2, "gradual": 4, "grate": [0, 2, 4], "green": 3, "greg": 2, "gregg": 2, "grigoropoulo": 2, "groundwork": 4, "grown": [0, 2], "growth": [0, 1, 2], "gst": 4, "guanghui": 2, "guangya": 2, "guangyuan": 2, "guanx": 2, "guid": [2, 3, 4], "guillaum": [0, 1, 2, 4], "guo": 2, "guocui": 2, "guox": 2, "gururaj": 2, "gyejung": 2, "gylfason": 2, "h": [2, 4], "ha": [0, 1, 2, 3, 4], "hae": 2, "hame": 2, "hamid": 2, "han": 2, "hand": 4, "hao": 2, "haogang": 2, "hardwar": 3, "harri": 2, "hasnain": 2, "have": [0, 1, 3, 4], "he": [1, 2, 3], "heat": 4, "heater": 4, "hee": 2, "heejeong": 2, "heinz": 2, "hemmatyar": 2, "henc": 4, "hendler": 2, "hendrik": 2, "heon": 2, "here": 4, "hereman": [0, 1, 2], "herman": 0, "herranz": 2, "heterostructur": [2, 4], "hideo": 2, "high": [0, 2], "higher": 4, "highest": 3, "highli": 4, "highlight": 4, "hinder": 4, "hiromi": 2, "hiroshi": 2, "hiroyuki": 2, "hlenbernd": 2, "ho": 2, "hobb": 2, "hojun": 2, "holger": 2, "hologram": [0, 1, 2, 3, 4], "holograph": [0, 2, 3, 4], "holographi": [0, 1, 2], "holsteen": 2, "homogen": 4, "hong": 2, "hongjun": 2, "honglin": 2, "hongwei": 2, "hoon": 2, "hori": 2, "horizon": 3, "horizont": 3, "horslei": 2, "hosono": 2, "hossein": 2, "hosseini": 2, "host": 1, "hot": 4, "howard": 2, "howev": [3, 4], "hsiang": 2, "hsieh": 2, "hsu": [0, 2], "hsuan": [0, 1, 2, 3], "htm": 2, "html": 2, "http": 2, "hu": 2, "hua": 2, "huang": 2, "hudson": 2, "huge": 3, "hugh": 4, "hui": 2, "huimin": 2, "hun": 2, "hung": 2, "hwan": 2, "hwang": 2, "hybrid": 2, "hydrogen": 4, "hyeonho": 2, "hyo": 2, "hysteresi": 2, "hyuck": 2, "hyun": 2, "hyung": 2, "hyunsoo": 2, "hz": [3, 4], "i": [1, 2, 3, 4], "ian": 2, "ichikawa": 2, "ideal": 4, "identifi": 3, "iedm": 2, "ieee": [0, 2], "igal": 2, "igzo": [2, 4], "il": 2, "illumin": 4, "ilya": 2, "imag": [2, 3, 4], "imec": 1, "impact": 3, "implement": 4, "impress": 4, "imprint": 3, "improv": [3, 4], "impur": 4, "incid": 4, "includ": [2, 4], "inclus": 4, "incorpor": 4, "inde": 4, "independ": [2, 4], "index": [2, 3, 4], "indic": [2, 3, 4], "indium": [2, 4], "individu": 4, "induc": 2, "industri": [3, 4], "inerti": 4, "infiltr": 2, "influenc": 4, "inform": [2, 3], "infrar": [2, 4], "ingazno": 3, "inhomogen": 2, "initi": 4, "innov": 3, "inoh": 2, "inou": 2, "inp": 2, "input": 1, "inset": 4, "insid": 4, "instead": 4, "institut": 1, "instrument": 2, "insul": [2, 4], "integr": [0, 2, 4], "intend": 3, "intens": 4, "interact": [2, 3], "interest": 4, "interestingli": 4, "interfac": [0, 2, 3, 4], "interfaci": [0, 2], "intern": 2, "introduc": 4, "investig": 4, "invit": 2, "io": 2, "iop": 2, "iopscienc": 2, "ipr": 2, "ir": [2, 4], "irina": 2, "iron": 4, "isabel": 2, "islam": [0, 2], "isotropi": 2, "ito": [2, 4], "its": [0, 2, 4], "ivan": 2, "iyer": 2, "j": [0, 2], "jae": 2, "jaeduck": 2, "jaffrai": 2, "jagadish": 2, "jamblinn": 2, "jame": 2, "jan": [0, 1, 2], "jang": 2, "janneck": 0, "janusz": [0, 2], "jap": 2, "japanes": 2, "jason": 2, "jcrysgro": [0, 2], "jeong": 2, "jere": 2, "jeremi": [1, 2], "jeremiah": 2, "ji": 2, "jiachen": 2, "jiaguang": 2, "jiahao": 2, "jiajia": 2, "jiajun": 2, "jianfeng": 2, "jiang": 2, "jianp": 2, "jianquan": 2, "jianxiong": 2, "jie": 2, "jihyun": 2, "jin": 2, "jing": 2, "jinghua": 2, "jingxuan": 2, "jingyi": 2, "jingyu": 2, "jinqiannan": 2, "jisan": 2, "jisoo": 2, "jitao": 2, "jjap": 2, "jo": 2, "johnson": 2, "jolli": 2, "jon": 2, "jonathan": 2, "jong": 2, "jongbum": 2, "joul": 4, "journal": 2, "journei": 3, "jphot": 2, "ju": 2, "juan": 2, "juli": [0, 2], "jun": 2, "june": 2, "jung": 2, "junghyun": 2, "jungwoo": 2, "junqiao": 2, "junyeob": 2, "just": 4, "j\u00fcrgen": 2, "k": 2, "kafai": 2, "kai": 2, "kaichen": 2, "kaifeng": 2, "kamali": 2, "kamin": 2, "kamran": 2, "kan": 2, "kanbayashi": 2, "kang": 2, "karel": 2, "kasyanova": 2, "kathleen": 2, "kathrin": 2, "kato": 2, "katrin": 2, "kaviani": [0, 2], "kawamoto": 2, "kawasaki": 2, "kazumi": 2, "ke": 2, "kenchi": 2, "kenneth": 2, "khoo": 2, "ki": 2, "kim": 2, "kitzerow": 2, "kivshar": 2, "klamkin": 2, "knowledg": [3, 4], "known": [3, 4], "kodama": 2, "korablev": 2, "korytov": [0, 2], "krasavin": 2, "krasnok": 2, "kremer": 2, "kriesch": 2, "krishnan": 2, "kristina": 2, "kristinn": 2, "kuan": 2, "kuleuven": [0, 2], "kun": 2, "kusunoki": 2, "kuznetsov": 2, "kwiek": 2, "kwon": 2, "kyle": 2, "kyoung": 2, "kyoungho": 2, "kyoungsik": 2, "kyunghe": 2, "kyungmok": 2, "l": 2, "lab": 3, "laid": 4, "lamacchia": 2, "landi": 2, "larg": [2, 3], "larger": 4, "laser": [0, 2, 3, 4], "last": 4, "lastli": 4, "later": 4, "lattic": [3, 4], "lavrinenko": 2, "layer": [2, 3, 4], "lc": 4, "lcd": 4, "lco": [2, 4], "le": 2, "lead": [3, 4], "leadership": 1, "leak": 2, "leaki": [2, 3, 4], "lee": 2, "lei": 2, "leister": 2, "len": [2, 4], "lens": [2, 4], "letian": 2, "letter": 2, "leupp": 2, "leuven": [0, 2], "leverag": 4, "levinstein": 2, "li": [1, 2], "liang": 2, "lidar": [2, 3, 4], "light": [0, 2, 3, 4], "lili": 2, "limit": [3, 4], "lin": 2, "linbo3": 2, "lind": 2, "line": 1, "linear": [0, 2, 4], "ling": 2, "lingl": 2, "lingyun": 2, "link": [2, 4], "linkinghub": 2, "liquid": 2, "liqun": 2, "lishu": 2, "litao3": 2, "lithium": 2, "lithographi": 2, "littl": 2, "liu": 2, "ln": 4, "local": [3, 4], "lohmann": 4, "lokesh": 2, "long": [2, 4], "longcheng": 2, "longer": 4, "longitudin": 2, "longq": 2, "look": 3, "lopez": 2, "loss": [2, 3, 4], "lou": 2, "low": [2, 3, 4], "lower": 4, "lpor": 2, "lsa": 2, "lu": 2, "luca": 2, "lun": 2, "luo": 2, "lyong": 2, "m": [0, 2, 4], "ma": 2, "ma11102040": 2, "ma2022": [0, 2], "ma5040661": 2, "machinereadablecit": 2, "made": 4, "maeda": 2, "magnesium": 4, "magnet": 4, "mahmood": 2, "mahon": 2, "mahsa": 2, "mai": [0, 2], "maier": 2, "major": 3, "make": [2, 3, 4], "mamonova": 2, "manag": 4, "manganes": 4, "mani": [3, 4], "manjappa": 2, "manuel": 2, "manufactur": 4, "manukumara": 2, "manuscript": 0, "marcel": 2, "marcello": 2, "march": [0, 2, 3], "mariano": 2, "mario": 2, "mark": 2, "markiewicz": 2, "mart": 2, "martin": 2, "martinson": 2, "mask": 1, "match": 3, "materi": [1, 2, 3, 4], "matter": 4, "matthia": 2, "matur": 4, "maxim": [0, 2, 4], "maximum": 4, "mayer": 2, "mbe": [0, 2, 3], "mcknight": 2, "mcmillen": 2, "mdpi": 2, "me4": 2, "measur": 4, "mechan": 2, "medium": 2, "meet": [0, 2, 4], "megen": 2, "mei": 2, "melt": 4, "mem": [2, 4], "meng": 2, "mention": 4, "merckl": [0, 1, 2], "meta": [2, 4], "metacanva": 2, "metadevic": 2, "metafilm": 2, "metal": [3, 4], "metalen": 4, "metalens": 4, "metamateri": [0, 1, 2, 4], "metasurfac": [2, 4], "method": [0, 2, 3, 4], "methodologi": 4, "metric": 4, "metrologi": 3, "meux": 2, "mg": 4, "mi10080505": 2, "michael": 2, "michel": 2, "microelectromechan": 2, "micromachin": 2, "micromet": 4, "microscop": 4, "microscopi": 3, "mid": 2, "midkiff": 2, "might": 4, "mike": 2, "mim": 4, "min": 2, "ming": 2, "mingbo": 2, "minghui": 2, "minor": 4, "minovich": 2, "miroshnichenko": 2, "mirror": 2, "mischa": 2, "miss": 2, "mix": 2, "mm": [1, 3], "mo": 2, "mobil": 3, "mock": 2, "mode": [2, 4], "model": [0, 1, 2, 3, 4], "modern": 0, "modul": [0, 2, 3], "moebiu": 2, "mohammad": 2, "mohd": 2, "mok": 2, "molecul": 4, "molecular": 3, "moloud": [0, 2], "moment": 4, "mondai": [0, 2], "mont": 2, "more": [0, 3, 4], "moresco": 2, "most": 4, "mostafa": 2, "mostli": 4, "move": [2, 3], "movement": 4, "mr": [0, 2], "mrs2000": 2, "mrs2007": 2, "mu": 4, "much": 4, "mukesh": 2, "mulda": 2, "muldarisnur": 2, "multi": 2, "multiband": 2, "multichannel": 2, "multicolor": 4, "multifunct": 2, "multipl": 4, "multiplex": 2, "multitud": 4, "musgrav": 2, "my": 4, "n": [2, 4], "na": 2, "naik": 2, "name": 4, "nano": [2, 3, 4], "nano8110871": 2, "nanodevic": 2, "nanoelectromechan": 2, "nanolett": 2, "nanomateri": 2, "nanomet": 3, "nanoph": 2, "nanophoton": 2, "nanopillar": 0, "nanoplasmon": 2, "nanoscal": 2, "nanosecond": 3, "nanospher": [2, 4], "nanotechnologi": 2, "naoya": 2, "naru": 2, "nassau": 2, "natur": [2, 4], "nature11727": 2, "nature12217": 2, "nauer": 2, "navab": 2, "ndez": 2, "nealei": 2, "need": [3, 4], "neg": [2, 4], "negro": 2, "neither": 3, "nemat": 2, "nemati": 2, "neshev": 2, "netta": 2, "neubrech": 2, "nevertheless": 4, "new": [2, 3], "next": [3, 4], "nguez": 2, "ni": 2, "nichola": 2, "nicola": 2, "nikola": 2, "nikolai": [0, 2], "niobat": 2, "nitrid": 2, "nl1006307": 2, "nl4006194": 2, "nl502998z": 2, "nm": [2, 3, 4], "nnano": 2, "nobel": 3, "noh": 2, "non": [0, 2], "nonlinear": 0, "nonvolatil": 4, "nor": 3, "norbert": 2, "normal": 4, "notabl": 4, "note": [2, 4], "noteworthi": 4, "notic": 4, "nouman": 2, "novel": 3, "novemb": 0, "now": 4, "nowadai": 4, "nphoton": 2, "numer": [3, 4], "o": [2, 4], "observ": 4, "obtain": [3, 4], "occupi": 4, "occur": 4, "octob": [0, 2, 3], "oe": 2, "oea": 2, "oejourn": 2, "off": 4, "offer": 4, "often": 4, "ok": 2, "ol": 2, "om": 2, "omid": 2, "one": [3, 4], "onli": [2, 4], "onlin": [0, 2], "onlinelibrari": 2, "onward": 4, "oper": [2, 4], "opg": 2, "optcom": 2, "optic": [0, 1, 2, 3], "optica": 2, "opticalengin": 2, "opticcoeffici": 2, "optim": [1, 2], "opto": 2, "orbit": 2, "order": [0, 2, 4], "org": 2, "organ": 0, "orient": 4, "origin": [2, 4], "osa": 2, "osofski": 2, "other": [3, 4], "otsuka": 2, "our": 3, "out": 4, "outcoupl": 4, "ouyang": 2, "over": [3, 4], "overview": 2, "oxid": [0, 1, 2, 3, 4], "oxygen": [2, 4], "p": [0, 2], "pablo": 2, "padilla": 2, "page": 2, "pain": 2, "pala": 2, "panel": 4, "paola": [0, 2], "papadaki": 2, "paper": 2, "paradigm": 2, "paramet": [2, 4], "park": 2, "part": 2, "pattern": [0, 2, 3, 4], "paul": [0, 1, 2], "pbte": 4, "pc12196": [0, 2], "pc1219619": [0, 2], "pdf": 2, "pei": 2, "pendri": 2, "perciev": 4, "perfect": [2, 4], "perform": [0, 1, 2], "period": 4, "perman": 4, "permeabl": 2, "permiss": 4, "permitt": [2, 4], "perovskit": [0, 2], "perspect": [3, 4], "peschel": 2, "peter": 2, "peterson": 2, "pez": 2, "phase": [2, 4], "phd": [2, 3, 4], "photo": 4, "photochrom": 4, "photograph": [3, 4], "photon": [0, 2, 4], "photonics8080292": 2, "photonix": 2, "photorefract": 4, "photoresist": 3, "photovolta": 2, "physic": [0, 2], "physica": 2, "physrevb": 2, "physrevlett": 2, "pi": [2, 4], "pictori": 2, "pierr": 2, "piezoelectr": 4, "pii": 2, "pin": 2, "ping": 2, "pioneer": 4, "piotr": 2, "piqu": 2, "pitch": [3, 4], "pitchappa": 2, "pixel": 4, "plai": 3, "planar": 2, "plane": [3, 4], "plasmon": [2, 4], "plasmostor": 2, "plate": 4, "platform": [0, 2, 3, 4], "pld": [0, 2, 3], "po": [0, 2], "pockel": [0, 3, 4], "podraza": 2, "pogrebnyakov": 2, "point": 4, "polar": [0, 2], "polym": 4, "polysilicon": 2, "pop": 2, "popul": 4, "posit": [2, 4], "possibl": [1, 3, 4], "post": 4, "pourtoi": 2, "powel": 2, "power": [2, 4], "pp": 0, "practic": [3, 4], "pragu": 0, "prakash": 2, "prasad": 2, "precis": 3, "predict": [0, 2], "prepar": [0, 1], "presenc": 3, "present": [0, 4], "preserv": 2, "pressur": 4, "preval": 4, "primarili": 4, "principl": [2, 4], "prism": [2, 4], "prize": 3, "probe": 4, "proc": [0, 2], "process": [1, 2, 3], "prof": 1, "profil": [3, 4], "programm": [2, 3], "progress": 3, "project": [0, 1, 4], "projector": [3, 4], "proke": 2, "proklov": 2, "promin": 4, "promis": 4, "proof": 4, "propag": [2, 3], "properti": [0, 2, 4], "propos": 3, "prospect": 4, "proton": 2, "prove": [3, 4], "provid": [1, 4], "pruessner": 2, "psalti": 2, "pseudo": [0, 2], "pssa": 2, "pu": 2, "pub": 2, "publish": 0, "puls": [0, 2, 3, 4], "push": 4, "puybaret": [0, 1, 2], "pva": 4, "pzt": 2, "q": 2, "qaderi": 2, "qi": 2, "qian": 2, "qiong": 2, "qiu": 2, "qixuan": 2, "quan": 2, "quantum": [0, 2], "quarter": 3, "quickli": 4, "r": 2, "rabinovich": 2, "radiat": [2, 4], "radic": 3, "rae": 1, "ragip": 2, "rai": 2, "rais": 4, "ralf": 2, "ran": 2, "rang": [2, 4], "ranjan": 2, "rapid": 4, "rare": 4, "rate": [3, 4], "rather": 4, "ra\u00fal": 2, "rc": 4, "re": [3, 4], "reach": [2, 3, 4], "read": 4, "reader": 4, "real": 2, "realis": 1, "realiti": [2, 3], "realiz": 3, "realm": 4, "reason": 3, "receiv": [1, 3], "recent": [2, 3, 4], "reconfigur": 2, "reconstruct": 4, "record": [2, 4], "rectangl": 4, "red": 3, "redistribut": 4, "refer": [3, 4], "reflect": [2, 4], "refract": [2, 3, 4], "refresh": 4, "regim": [2, 4], "regular": 2, "reichelt": 2, "rel": [3, 4], "relev": 4, "reli": 4, "remain": 4, "remark": 4, "renaud": [0, 2], "renauld": 1, "reorient": 4, "report": [2, 4], "reproduc": 4, "reprogramm": [0, 2, 4], "republ": 0, "request": 3, "requir": [3, 4], "research": [1, 2, 3, 4], "reset": 4, "resid": 4, "resist": 4, "resler": 2, "resolut": [0, 2, 3, 4], "resolv": 2, "reson": [2, 4], "respect": 4, "respond": 4, "respons": 4, "result": [0, 4], "retain": 4, "retriev": 2, "return": 4, "review": [2, 4], "rewrit": [2, 4], "rgb": 4, "ri": 2, "richardson": 2, "right": 4, "ring": [2, 4], "rise": 4, "rita": 2, "rivero": 2, "roadblock": 3, "roadmap": 3, "robbi": 0, "robert": [0, 1, 2], "roel": [0, 2], "roger": 2, "rogier": 2, "roi": 2, "role": 4, "rolin": 0, "rongbo": 2, "root": 4, "rsc": 2, "rui": 2, "ruizh": 2, "rusak": 2, "rust": 2, "ruzan": 2, "ryo": 2, "ryu": 2, "s0030401812008425": 2, "s40580": 2, "s41467": 2, "s41565": 2, "s41586": 2, "s41598": 2, "s43074": 2, "s43593": 2, "sabuncuoglu": 1, "sadegh": 2, "safeti": 3, "saha": 2, "sai": 2, "said": 4, "sajjad": 2, "sajuyigb": 2, "salinga": 2, "same": [3, 4], "san": [0, 2], "sanchit": 2, "sangwook": 2, "sankhyabrata": 2, "sautter": 2, "sb": 2, "scale": [2, 3, 4], "scan": 4, "scanner": 2, "scatter": [3, 4], "scenario": 4, "sch": 2, "schell": 2, "schemat": 4, "scheme": [3, 4], "schuller": 2, "schultz": 2, "sciadv": 2, "scienc": [2, 3], "sciencemag": 2, "scientif": [1, 2, 3], "scope": 4, "scribe": 4, "second": [0, 4], "section": 4, "see": [0, 1, 3], "seger": 1, "select": [2, 4], "sem": 4, "semiconductor": [3, 4], "sens": 4, "sensor": 4, "seok": 2, "seong": 2, "separ": [3, 4], "septemb": [0, 2], "sequenc": 1, "serv": 4, "set": 4, "seung": 2, "seunghoon": 2, "sever": [1, 3, 4], "seyedeh": 2, "shadow": 4, "shadrivov": 2, "shah": 2, "shalaev": 2, "shallow": 4, "shaltout": 2, "shao": 2, "shaowei": 2, "shaoxian": 2, "shape": [0, 2, 4], "sharma": 2, "sharp": 2, "shelbi": 2, "shell": 4, "shi": 2, "shift": 4, "shifter": 4, "shin": 2, "shirmanesh": 2, "short": [2, 4], "shoujun": 2, "should": [3, 4], "shoulder": 4, "show": [3, 4], "showcas": 4, "shown": 4, "shuai": 2, "shuang": 2, "shufang": 2, "shun": 2, "shuyan": 2, "si": [0, 2], "side": [2, 4], "signal": [2, 3], "sik": 2, "silei": 2, "silicon": [0, 2, 3, 4], "silver": 2, "simdyankin": 2, "similar": 4, "similarli": 4, "simon": 2, "simul": [3, 4], "sin": 3, "sinc": 4, "singh": 2, "singl": [0, 2, 4], "singleton": 2, "situat": 4, "size": 4, "slab": 3, "slightli": 4, "sliwinski": 2, "slm": 4, "slot": 2, "slow": [2, 3], "slower": 4, "small": [3, 4], "smallei": 2, "smart": 2, "smith": 2, "smithwick": 2, "smolentsev": [0, 2], "so": 4, "social": 3, "soham": 2, "sokhoyan": 2, "solar": 4, "solid": 2, "solidi": 2, "solv": 4, "some": 4, "song": 2, "sonnefraud": 2, "soo": 2, "sourc": 3, "space": [2, 4], "spatial": [0, 2, 4], "spatiotempor": 2, "special": [2, 4], "specif": 4, "spectral": 4, "spectropolarimetri": 2, "speed": [3, 4], "spie": [0, 2], "spiedigitallibrari": 2, "spin": 2, "spj": 2, "split": [2, 4], "spring": [0, 2], "springer": 2, "squar": 3, "srep08660": 2, "srep11678": 2, "srep15754": 2, "srep41152": 2, "srr": 4, "srtio": [0, 3], "srtio3": [0, 2], "stabl": 4, "stack": [1, 4], "stadler": 2, "stai": 4, "standard": [3, 4], "stanlei": 2, "stapl": 4, "start": [3, 4], "state": [0, 2], "static": [3, 4], "statu": 2, "staud": 2, "steadili": 4, "steer": [2, 4], "steerd": 4, "steerer": 4, "stefan": [0, 2], "step": [3, 4], "stephan": 2, "still": 4, "sto": 1, "stoichiometr": 4, "storag": [2, 4], "store": [3, 4], "straightforward": 4, "strain": 4, "strake": 2, "strasbourg": [0, 2], "stress": 2, "stretch": 4, "strong": [0, 1, 4], "structur": [2, 4], "studi": [0, 2], "sub": [0, 2, 3], "subject": 1, "subsect": 4, "subsequ": 3, "substrat": [0, 2, 4], "subwavelength": [0, 2, 4], "suffici": [3, 4], "suitabl": 4, "sukjoon": 2, "summanwar": 2, "summar": [3, 4], "sun": 2, "sundeep": 2, "sung": 2, "superposit": 4, "supervis": 1, "suppl": 2, "suppli": 4, "support": [0, 1], "surfac": 4, "swap": [3, 4], "swave": [2, 4], "swir": 2, "switch": [2, 3, 4], "switchabl": 2, "symposium": 0, "system": 2, "t": [2, 4], "tabl": [0, 1], "tackl": 4, "tadashi": 2, "tae": 2, "tag": 2, "taghinejad": 2, "tail": 4, "take": 1, "tal": 2, "tang": 2, "tao": 2, "tapashre": 2, "target": 4, "tatsuhiro": 2, "tatsuya": 2, "taubner": 2, "tayyab": 2, "tco": 4, "te": 2, "techniqu": 4, "technologi": [1, 2, 3, 4], "teichrib": 2, "teimourpour": 2, "telecommun": 2, "temperatur": [2, 4], "tempor": 2, "ten": 4, "tend": 4, "tendenc": 4, "teng": 2, "tensor": 4, "terahertz": 2, "term": 4, "tetsuya": 2, "tezcan": 1, "thei": [3, 4], "them": 4, "theoret": 4, "therefor": 3, "theresa": 2, "thermal": [2, 4], "thermo": 2, "thermoelectr": 4, "thesi": [2, 3], "thi": [0, 3, 4], "thick": 3, "thierri": [0, 2], "thin": [0, 2, 4], "thoma": [1, 2], "though": 4, "thought": 4, "thrane": 2, "three": [2, 4], "through": [0, 2, 3, 4], "thu": 4, "thyagarajan": 2, "thz": 4, "tian": 2, "tianbo": 2, "time": [2, 3, 4], "timurdogan": 2, "tin": 4, "ting": 2, "titan": [0, 2], "tobia": 2, "todai": 3, "tokei": 1, "tom": 2, "tong": 2, "too": [3, 4], "top": 4, "topic": 4, "toshihiko": 2, "toward": [0, 2, 3, 4], "traci": 2, "transduc": 4, "transfer": 3, "transistor": 4, "transit": [2, 4], "transmiss": [2, 4], "transpar": [0, 1, 2, 4], "trap": 4, "travel": 4, "trench": 3, "trend": 0, "treptow": 2, "triesault": 2, "trifunct": 2, "troccoli": 2, "true": [2, 4], "tsai": 2, "tsang": [0, 1, 2, 3], "tschudi": 2, "tseng": 2, "tsvetanova": 1, "tterer": 2, "tun": 2, "tunabl": [2, 4], "tune": [2, 4], "turpin": 2, "two": [1, 2, 3, 4], "type": [2, 3, 4], "typic": 4, "u": [2, 3], "ulf": 2, "ultra": 4, "ultracompact": 2, "ultrasound": 4, "ultraviolet": 4, "umberto": [0, 2], "unachiev": 4, "uncommon": 4, "under": 4, "undergo": 4, "understand": 4, "underwood": 2, "unfortun": 4, "uniform": 3, "uniqu": 4, "unit": [0, 1, 2, 4], "uniti": 2, "up": [2, 4], "upscal": 3, "uri": 2, "url": 2, "us": [2, 3, 4], "usategui": 2, "ussler": 2, "usukura": 2, "util": 4, "uv": 4, "v": 2, "vacanc": [2, 4], "valeri": 2, "valu": 4, "van": 2, "vanadium": [2, 4], "vari": 4, "variat": [3, 4], "varieti": 4, "variou": 4, "vass": 2, "vasudev": 2, "veri": [3, 4], "verif": 2, "version": 4, "versu": 4, "vertic": 3, "vettes": 2, "via": 2, "viabl": 4, "video": [0, 1, 2, 4], "videoholograph": 4, "view": 4, "viii": 0, "viktoriia": 2, "visibl": [2, 3, 4], "vladimir": 2, "vo_2": 4, "vol": 2, "volatil": 2, "voltag": [2, 3, 4], "volum": 2, "w": 2, "wa": [3, 4], "wafer": [1, 3, 4], "wagner": 2, "wai": [2, 3], "wallac": 2, "wang": [0, 1, 2, 3], "wangshi": 2, "washington": 2, "watt": 2, "wave": [2, 3, 4], "wavefront": [0, 2], "waveguid": [0, 1, 2, 4], "wavelength": [0, 2, 3, 4], "we": [3, 4], "wei": 2, "weijian": 2, "weijun": 2, "weili": 2, "weim": 2, "weiner": 2, "well": 4, "wen": 2, "wenjun": 2, "wenshan": 2, "were": [3, 4], "weren": 4, "werner": 2, "weslei": 2, "when": [3, 4], "whenev": 4, "where": [3, 4], "wherea": 4, "wherein": 3, "which": [3, 4], "whole": 4, "wide": [2, 3, 4], "wilei": 2, "william": 2, "wise": 4, "without": [1, 3, 4], "won": 2, "woo": 2, "wook": 2, "woong": 2, "work": [0, 4], "world": [2, 3], "would": 1, "writabl": 4, "write": [3, 4], "wu": 2, "wuttig": 2, "www": 2, "x": 2, "xi": [0, 2], "xiangang": 2, "xiangh": 2, "xianyi": 2, "xiao": 2, "xiaodi": 2, "xiaog": 2, "xiaoguang": 2, "xiaoliang": 2, "xiaolong": 2, "xiaosheng": 2, "xie": 2, "xieyu": 2, "xingbo": 2, "xinwan": 2, "xinyuan": 2, "xiong": 2, "xlink": 2, "xml": 2, "xu": 2, "xue": 2, "xueqian": 2, "xx": 1, "y": 2, "yaacobi": 2, "yamashita": 2, "yan": 2, "yanfeng": 2, "yang": 2, "yannick": 2, "yao": 2, "yate": 2, "year": 4, "yeo": 2, "yeol": 2, "yeon": 2, "yet": [3, 4], "yi": 2, "yibo": 2, "yield": 3, "yiguo": 2, "yijia": 2, "yinghui": 2, "yong": 2, "yongtian": 2, "yoo": 2, "yoon": 2, "you": 2, "youb": 2, "youmin": 2, "youn": 2, "young": 2, "yu": 2, "yuan": 2, "yuanmu": 2, "yue": 2, "yuehong": 2, "yuhua": 2, "yuma": 2, "yun": 2, "yunhui": 2, "yunlong": 1, "yuri": 2, "yuuichi": 2, "yuyao": 2, "zang": 2, "zayat": 2, "zengxia": 2, "zentgraf": 2, "zero": [2, 4], "zhang": 2, "zhao": 2, "zhaolin": 2, "zheludev": 2, "zhen": 2, "zhenci": 2, "zheng": 2, "zhenh": 2, "zhongyuan": 2, "zhou": 2, "zhu": 2, "zichen": 2, "ziji": 2, "zilun": 2, "zinc": 4, "zno": [2, 4], "zou": 2, "zsolt": 1, "\u00df": 2, "\u00e1": 2, "\u00e4": 2, "\u00e9": 2, "\u00ed": 2, "\u00f3": 2, "\u00f6": 2, "\u00f9": 2, "\u00fc": 2}, "titles": ["ERC Publications", "ERC Team", "Bibliography", "Video Holography: summary", "State-of-the-Art overview: Modulation mechanisms for dynamic holography"], "titleterms": {"academ": 1, "acousto": 4, "applic": 3, "art": 4, "bibliographi": 2, "bto": 3, "carrier": 4, "challeng": 3, "confer": 0, "contributor": 1, "core": 1, "crystal": 4, "develop": 3, "dope": 4, "dynam": 4, "electromechan": 4, "en": 3, "erc": [0, 1, 3], "fund": 3, "further": 3, "high": 3, "histori": 3, "holographi": [3, 4], "implement": 3, "info": 3, "inject": 4, "introduct": 3, "investig": 1, "journal": 0, "liquid": 4, "lithium": 4, "main": 3, "mechan": 4, "metamateri": 3, "micro": 4, "modul": 4, "niobat": 4, "optic": 4, "other": 1, "overview": 4, "paper": 0, "phd": [0, 1], "princip": 1, "project": 3, "public": 0, "qualiti": 3, "remain": 3, "result": 3, "select": 3, "senior": 1, "short": 3, "staff": 1, "state": 4, "student": 1, "summari": 3, "system": 4, "target": 3, "team": 1, "thermo": 4, "thesi": 0, "video": 3, "waveguid": 3, "work": 3}}) \ No newline at end of file +Search.setIndex({"alltitles": {"Acousto-Optics": [[4, "acousto-optics"]], "Bibliography": [[2, null]], "Carrier Injection": [[4, "carrier-injection"]], "Conferences": [[0, "conferences"], [0, "id1"]], "Core Team": [[1, "core-team"]], "Doped Lithium Niobate": [[4, "doped-lithium-niobate"]], "ERC Publications": [[0, null]], "ERC Team": [[1, null]], "High-quality BTO waveguide": [[3, "high-quality-bto-waveguide"]], "Introduction": [[3, "introduction"]], "Journal papers": [[0, "journal-papers"], [0, "journalpapers"]], "Liquid Crystals": [[4, "liquid-crystals"]], "Main funding info": [[3, "main-funding-info"]], "Main project results": [[3, "main-project-results"]], "Metamaterial development": [[3, "metamaterial-development"]], "Micro-electromechanical Systems": [[4, "micro-electromechanical-systems"]], "Other contributors": [[1, "other-contributors"]], "PhD students": [[1, "phd-students"], [1, "phdstaff"]], "PhD thesis": [[0, "phd-thesis"], [0, "phd"]], "Principal Investigator": [[1, "principal-investigator"]], "Remaining challenges en further work": [[3, "remaining-challenges-en-further-work"]], "Selected implementation in the Video holography ERC project": [[3, "selected-implementation-in-the-video-holography-erc-project"]], "Senior academic staff": [[1, "staff"]], "Senior academic staff in the team": [[1, "senior-academic-staff-in-the-team"]], "Short history of Holography": [[3, "short-history-of-holography"]], "State-of-the-Art overview: Modulation mechanisms for dynamic holography": [[4, null]], "Target applications for holography": [[3, "target-applications-for-holography"]], "Thermo-Optics": [[4, "thermo-optics"]], "Video Holography: summary": [[3, null]]}, "docnames": ["Publications", "Team", "bib", "intro", "sota"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxcontrib.bibtex": 9}, "filenames": ["Publications.md", "Team.md", "bib.md", "intro.md", "sota.ipynb"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": [0, 2, 4], "0": [0, 2, 4], "000005": 2, "00020": 2, "00032": 2, "0004": 2, "000411": 2, "000491": 2, "000557": 2, "000689": 2, "000855": 2, "000915": 2, "001": [0, 2], "001090": 2, "001129": 2, "001955": 2, "0019980": [0, 2], "002264": 2, "002415": 2, "002499": 2, "002592": 2, "00332": 2, "003653": 2, "0045": 2, "004575": 2, "004740": 2, "00787": 2, "008879": 2, "0091": 2, "01": [0, 2], "01191060mtgab": [0, 2], "012544415": 2, "013001": 2, "013655": 2, "014680398244902": 2, "018": 2, "019": 2, "0190": 2, "019029": 2, "020": 2, "020831": 2, "021": 2, "0213": 2, "022": 2, "023": 2, "026387": 2, "03155": 2, "032970": 2, "053901": 2, "06201": 2, "0664": 2, "07": 2, "074": 3, "0c01269": 2, "0c01599": 2, "1": [0, 1, 2, 3, 4], "10": [0, 2, 3, 4], "100": [2, 3, 4], "1002": 2, "101": [2, 4], "1016": [0, 2], "102": [2, 4], "1021": [0, 2], "103": [2, 4], "1038": 2, "1039": 2, "104": [2, 4], "104104": [0, 2], "1049": 2, "105": [2, 4], "1058847": 2, "106": [2, 4], "1060": [0, 2], "1063": [0, 2], "107": [2, 4], "108": [2, 4], "1080": 2, "1088": 2, "109": [2, 4], "1090": 2, "10nm": 4, "11": [0, 2, 4], "110": [2, 4], "1103": 2, "1109": 2, "111": [2, 4], "11112": 2, "111603": 2, "1117": [0, 2], "112": [2, 4], "1126": 2, "1129": 2, "113": [2, 4], "114": [2, 4], "1143": 2, "11484": [0, 2], "114840d": [0, 2], "1149": [0, 2], "115": [2, 4], "116": [2, 4], "11678": 2, "117": [2, 4], "118": [2, 4], "1186": 2, "119": [2, 4], "12": [0, 2, 4], "120": [2, 4], "121": [2, 4], "122": [2, 4], "123": [2, 4], "124": [2, 4], "125": [2, 4], "126524": [0, 2], "128": [0, 2], "13": [0, 2, 4], "131919": 2, "1364": [0, 2], "13655": 2, "14": [2, 4], "148": 2, "15": [0, 2, 4], "150": 4, "1515": 2, "1532": 2, "1535": 2, "1544": 2, "1550": 2, "1550nm": 4, "1557": 2, "156": 4, "157": 2, "15754": 2, "16": [0, 2, 4], "160": 4, "1600716": 2, "1600889": 2, "165": 2, "1652580": 2, "1658195": 2, "166": 2, "1696": 2, "17": [2, 4], "171103": 2, "1754607": 2, "17h00": 2, "18": [2, 4], "180": 4, "180009": 2, "18000901": 2, "18000925": 2, "1800835": 2, "1803": 2, "1810": 2, "1844": 2, "185": 2, "186": 2, "188783": 2, "19": [2, 4], "1900175": 2, "1901182": 2, "19029": 2, "1947": 3, "195": 2, "1955": 2, "1960": 3, "1966": 2, "1968": 2, "1969": 2, "1970": 4, "1973": 2, "1989": 2, "199": 2, "1990": 4, "1992": 2, "1993": 2, "199323": 2, "1996": 2, "1997": 2, "1998": 2, "1d": 4, "2": [1, 2, 3, 4], "20": [2, 4], "2000": 2, "2001": 2, "2006": 2, "2007": 2, "2008": 2, "2010": 2, "2011": 2, "2012": 2, "201205076": 2, "2013": 2, "2014": 2, "2015": 2, "201500676": 2, "2016": [2, 3], "201600106": 2, "201600716": 2, "201600889": 2, "2017": [2, 3], "201700733": 2, "201703878": 2, "2018": [0, 2], "201800835": 2, "201806692": 2, "2019": 2, "201900175": 2, "201901182": 2, "2020": [0, 2, 3], "2021": [0, 2], "202100369": 2, "2022": [0, 2], "202200051": 2, "2023": [0, 2, 3], "2024": [0, 2], "2040": 2, "207402": 2, "20831": 2, "20th": [0, 2], "21": [2, 4], "2100369": 2, "2111": 2, "2116": 2, "21261": 2, "21302": 2, "214": 2, "21648": 2, "21655": 2, "21738": 2, "2197742": 2, "21st": 4, "22": [2, 4], "2200051": 2, "223": 2, "225": 2, "2264": 2, "23": [2, 4], "235305": 2, "23rd": [0, 2], "24": [2, 4], "2415": 2, "242": 2, "2430485": 2, "247": 2, "2499": 2, "25": [2, 4], "252": 2, "256": 2, "2568032": [0, 2], "257": 2, "2592": 2, "26": [2, 4], "260": 2, "261": 2, "2632022": 2, "26387": 2, "27": [2, 4], "2719": 2, "2726": 2, "28": [2, 4], "285": 2, "29": [2, 4], "290": 2, "29026": 2, "292": 2, "29374": 2, "2957": 2, "2963": 2, "2d": [2, 4], "3": [0, 2, 3, 4], "30": [2, 4], "300": [1, 2, 3, 4], "300mm": 1, "3030": 3, "3049": 2, "3070": 2, "31": [2, 3, 4], "313": 2, "31429": 2, "316": 2, "317": 2, "32": [2, 4], "322": 2, "3264": 2, "3294": 2, "32970": 2, "33": [2, 4], "332486": 2, "3389": 2, "3390": 2, "3396": 2, "34": [2, 4], "34133": 2, "3427429": 2, "3470": 2, "3475": 2, "35": [2, 4], "355200": 4, "36": [2, 4], "360": 4, "365": 2, "3653": 2, "37": [2, 4], "374": 2, "38": [2, 4], "381": 2, "381484": 2, "383877": 2, "39": [2, 4], "3901": 2, "3912": 2, "393": 2, "3966": 2, "3969": 2, "3c01401": 0, "4": [0, 2, 3, 4], "40": [2, 4], "400441": 2, "401486": 2, "407": 2, "41": [2, 4], "411": 2, "41152": 2, "413": 2, "42": [2, 4], "43": [2, 4], "4308": 2, "4315": 2, "431622": 2, "44": [2, 4], "448391": 2, "45": [2, 4], "451750": 2, "4575": 2, "46": [2, 4], "47": [2, 4], "4740": 2, "48": [2, 4], "4802901": 2, "481396": [0, 2], "4858": 2, "4865": 2, "49": [2, 4], "491": 2, "493": 2, "498": 2, "499": 3, "5": [0, 2, 3, 4], "50": [2, 4], "500": [3, 4], "5000": 2, "500n": 4, "50150": 2, "5018865": 2, "502": 2, "505": 2, "51": [2, 4], "52": [2, 4], "529": 0, "53": [2, 4], "5319": 2, "5325": 2, "536": 0, "54": [2, 4], "541": 2, "547": 2, "548": 2, "5496": 2, "55": [2, 4], "5500": 2, "5507": 2, "551": 2, "5514": 2, "557": 2, "56": [2, 4], "567": 2, "57": [2, 4], "575": 2, "58": [2, 4], "5816": 2, "582": [0, 2], "586087": 2, "59": [2, 4], "5b00723": 2, "5nm": 4, "5v": 4, "6": [2, 3, 4], "60": [2, 4], "600": 4, "600nm": 4, "61": [2, 4], "62": [0, 2, 4], "620": 2, "63": [2, 4], "64": [2, 4], "6450": 2, "6463": 2, "6468": 2, "65": [2, 4], "66": [2, 4], "661": 2, "665": 2, "668": 2, "6686": 2, "67": [2, 4], "68": [2, 4], "683": 2, "689": 2, "69": [2, 4], "6912": 2, "6920": 2, "699": 2, "6b00555": 2, "6b04378": 2, "7": [2, 3], "70": [2, 4], "71": [2, 4], "714": 2, "72": [2, 4], "73": [2, 4], "735": 2, "74": [2, 4], "740": 2, "742299": 3, "7431": 2, "7454": 2, "75": [2, 4], "752": 2, "754": 2, "76": [2, 4], "77": [2, 4], "78": [2, 4], "79": [2, 4], "7973": 2, "8": [2, 3, 4], "80": [2, 4], "800nm": 4, "81": [2, 4], "82": [2, 4], "83": [2, 4], "84": [2, 4], "85": [2, 4], "86": [2, 4], "8660": 2, "87": [2, 4], "871": 2, "88": [2, 4], "8879": 2, "8898": 2, "89": [2, 4], "8986": 2, "8b00351": 2, "8b01014": 2, "9": [2, 3, 4], "90": [2, 4], "91": [2, 4], "915": 2, "92": [2, 4], "93": [2, 4], "937": 2, "94": [2, 4], "943": 2, "95": [2, 4], "96": [2, 4], "97": [2, 4], "9765089": 2, "98": [2, 4], "986": 2, "99": [2, 4], "994": 2, "A": [0, 2, 3, 4], "As": [3, 4], "At": 4, "By": 4, "For": [3, 4], "In": [2, 4], "It": [1, 4], "Its": [0, 2], "Near": 2, "Not": 4, "Of": 4, "On": [0, 4], "One": [3, 4], "That": [3, 4], "The": [0, 1, 2, 3, 4], "Their": [2, 4], "There": 3, "These": [3, 4], "To": [2, 3, 4], "With": 3, "_": 2, "aar6768": 2, "aaron": 2, "aat3100": 2, "aax5961": 2, "ab": 2, "abbrevi": 4, "abcc52": 2, "abdollahramezani": 2, "abl": [3, 4], "about": 4, "abov": [3, 4], "absent": 4, "absorb": [2, 4], "absorpt": [2, 4], "abstract": [0, 2], "ac": [0, 2], "academ": 2, "accompani": 4, "accumul": 4, "achiev": 4, "acoleyen": 2, "acoust": [3, 4], "acousto": 2, "acoustoopt": 2, "across": 2, "acsnano": 2, "acsphoton": [0, 2], "act": 4, "activ": [0, 2, 4], "actual": 4, "actuat": [2, 4], "adapt": 4, "add": 4, "addit": 4, "addition": 4, "address": [2, 4], "adequ": 4, "adfm": 2, "adg": 3, "adibi": 2, "adma": 2, "adom": 2, "adpr": 2, "adv": 2, "advanc": [0, 2, 4], "advent": 3, "after": 4, "afterward": 4, "again": 4, "ago": 4, "ahm": [0, 2], "ahmet": 2, "aihua": 2, "aim": 4, "aircraft": 4, "ajai": 2, "akari": 2, "akiyama": 2, "al": 2, "albert": 2, "aleksei": 2, "alena": 2, "alex": 2, "alexand": 2, "alexandra": 2, "alexej": 2, "algorithm": 3, "ali": 2, "align": 4, "all": [1, 2], "allow": [3, 4], "almost": 4, "alok": 2, "along": [3, 4], "also": [1, 3, 4], "alter": [3, 4], "altern": [2, 4], "although": 3, "aluminium": 4, "alwai": 4, "ami": 2, "amir": 2, "amorph": 4, "amount": [3, 4], "amplif": 4, "amplitud": [2, 4], "amr": 2, "an": [2, 3, 4], "analog": [2, 3], "anand": 2, "andrea": 2, "andrei": 2, "andrej": 2, "angl": [2, 4], "angular": 2, "ani": 4, "anisotrop": 2, "ann": 2, "anneal": 4, "anomal": 2, "anopchenko": 2, "antenna": [2, 4], "antoni": 2, "antonio": 2, "ao": [0, 2], "aop": 2, "apl": 2, "appli": [0, 2, 3, 4], "applic": [0, 2, 4], "approach": [2, 4], "april": 0, "ar": [3, 4], "arash": 2, "arbabi": 2, "architectur": [3, 4], "area": 3, "arian": 2, "around": [3, 4], "arrai": [2, 4], "artemov": 2, "artifact": [2, 4], "artist": 4, "artur": [0, 2], "ashkin": 2, "assist": 2, "atom": 4, "atorf": 2, "attain": 4, "attempt": 4, "attribut": 4, "atwat": 2, "augment": 3, "august": [0, 2], "automat": 4, "automot": 3, "avail": [3, 4], "axi": [3, 4], "ayliff": 2, "azarov": 2, "b": [2, 4], "b978": 2, "baba": 2, "babicheva": 2, "back": 4, "backbon": 4, "backplan": 4, "badosa": 2, "baet": [0, 2], "bagheri": 2, "bai": 2, "baizh": 2, "balein": 2, "ballman": 2, "bandwidth": 2, "bandyopadhyai": 2, "banknot": 3, "baraba": 2, "barium": [0, 2], "base": [0, 2, 3, 4], "basi": 3, "batio": 0, "batio3": [0, 2], "beam": [0, 2, 3, 4], "beamsteer": 2, "becom": 4, "been": [0, 1, 3, 4], "begin": 4, "behaviour": 4, "behrad": 2, "being": 4, "belgium": [0, 2], "below": 3, "benelux": 0, "benfeng": 2, "bernhard": 2, "best": 4, "better": 4, "between": [1, 3, 4], "beyond": [2, 3], "bhoolokam": 2, "bia": [2, 4], "biaob": 2, "bias": 4, "bifunct": 2, "bingzhao": 2, "blanch": 2, "blue": [3, 4], "bo": 2, "bogdanowicz": [0, 2], "bola": 2, "boltasseva": 2, "bond": [1, 3], "bossard": 2, "both": [3, 4], "bottom": [3, 4], "bove": 2, "boyd": 2, "bragg": 4, "breakthrough": 3, "brener": 2, "brent": 2, "bridg": 4, "bright": 2, "bring": 4, "britton": 2, "broadband": 2, "brongersma": 2, "brush": 4, "brussel": 0, "bto": 1, "budget": 3, "build": 1, "built": 4, "bulletin": 2, "bum": 2, "burgo": 2, "burlington": 2, "buse": 2, "byeol": 2, "byoung": 2, "byung": 2, "c": [0, 2, 3, 4], "c8nr04471f": 2, "cai": 2, "caihong": 2, "calcul": 4, "california": [0, 2], "call": 4, "came": 3, "can": [0, 3, 4], "candid": 4, "cannot": 4, "cantilev": 4, "cao": 2, "capabl": [2, 4], "capasso": 2, "capretti": 2, "card": 3, "carefulli": 3, "carlo": 2, "case": 4, "caus": [2, 4], "caviti": [2, 4], "cedric": 0, "celano": [0, 2], "cell": 4, "centimetr": 3, "centuri": 4, "certain": 4, "chalcogenid": 2, "challeng": 4, "chan": 2, "chander": 2, "chang": [2, 3, 4], "changgyun": 2, "channel": [3, 4], "chao": 2, "chapter": [2, 4], "character": [0, 1, 2], "characterist": 4, "charg": [1, 4], "chen": 2, "cheng": 2, "chengkuo": 2, "chenglong": 2, "chennupati": 2, "chi": 2, "chieh": 2, "chigrin": 2, "chih": 2, "chip": [0, 2, 4], "cho": 2, "choi": 2, "chong": 2, "chongwen": 2, "choo": 2, "chorsi": 2, "christian": 2, "christoph": 2, "chu": 2, "chun": [0, 2], "chunmei": 2, "cihan": 2, "circ": [2, 4], "circuit": 2, "clad": [3, 4], "clara": 2, "clark": 2, "classifi": 4, "cleanroom": [1, 3], "clear": 3, "clement": [0, 1, 2], "clemmen": 0, "click": 3, "close": 3, "cm": 4, "cmo": 4, "cmp": 1, "coeffici": [2, 3, 4], "coher": 3, "coll": 2, "collect": 4, "collinear": 2, "color": [2, 3, 4], "colour": 4, "combin": [3, 4], "come": 3, "commerci": 4, "commonli": 4, "commun": [2, 3], "compani": 4, "compar": 4, "compat": 4, "complementari": 4, "complet": [2, 3, 4], "complex": [2, 3, 4], "compon": [2, 4], "composit": 4, "compress": 4, "compris": 3, "comput": [0, 2], "conard": [0, 2], "conceiv": 1, "concentr": 4, "concept": [3, 4], "condit": [1, 4], "conduct": [0, 2, 3, 4], "conferenc": 3, "cong": 2, "conni": 2, "consequ": [3, 4], "consid": [3, 4], "constant": [2, 3, 4], "constitu": 4, "construct": [0, 4], "consumpt": 4, "contact": 3, "contain": 4, "context": 4, "contract": 3, "contrast": 2, "control": [0, 2, 3, 4], "converg": 2, "convers": [2, 4], "cool": 4, "coolbaugh": 2, "core": [3, 4], "correspond": 4, "costa": 2, "could": 4, "coupl": [2, 4], "coupler": [0, 2, 4], "cover": 4, "craighead": 2, "creat": [3, 4], "creation": 4, "credit": 3, "croe": [0, 1, 2, 4], "crossland": 2, "crucial": 4, "crystal": [0, 2], "crystallin": [0, 2, 4], "cui": 2, "current": 4, "custom": [0, 2], "czech": 0, "d": [2, 4], "dae": 2, "daichi": 2, "daili": 1, "daisuk": 2, "dal": 2, "dalir": 2, "damag": 4, "dana": 2, "daniel": 2, "dape": 2, "dash": 4, "data": 4, "date": [2, 4], "david": 2, "de": [0, 2], "deanna": 2, "decad": 4, "decemb": 0, "decker": 2, "deep": [1, 4], "defin": 4, "deflect": 2, "deflector": [2, 4], "defocus": 2, "degre": 4, "dehydrogen": 4, "delaland": 2, "delta": 4, "demonstr": [2, 3], "deng": 2, "deniz": 1, "denni": 3, "densiti": 4, "depend": [2, 4], "depict": 3, "deposit": [0, 2, 3, 4], "depreng": 2, "depth": 4, "describ": [3, 4], "descript": 0, "deshmukh": 2, "design": [1, 4], "desir": 4, "despit": 3, "detail": 3, "detect": 4, "detector": 4, "develop": 2, "devic": [1, 2, 4], "dhakar": 2, "diana": 1, "diaz": 2, "diego": [0, 2], "dielectr": [2, 3, 4], "diest": 2, "differ": [1, 4], "diffract": [2, 4], "dimension": [2, 3, 4], "din": 2, "dioxid": [2, 4], "dipol": 4, "dirdal": 2, "direct": 3, "directli": 4, "director": 1, "disclos": 4, "dispers": 2, "displac": [2, 4], "displai": [0, 2, 4], "distinct": 4, "dive": 1, "dmitri": 2, "do": [2, 4], "doe": [2, 4], "doi": [0, 2, 3], "dolan": 2, "dom": 2, "domain": [3, 4], "done": [3, 4], "dong": 2, "dopant": 4, "dope": 2, "dorian": 2, "dorschner": 2, "doubl": 2, "doublet": 4, "doubli": 2, "dougla": 2, "down": 4, "downscal": 4, "dr": 1, "dragomir": 2, "drive": [1, 3, 4], "driven": [2, 3, 4], "drude": 4, "du": 2, "dual": 2, "due": 4, "dug": 2, "duhyun": 2, "dullo": 2, "dye": 2, "dynam": [2, 3], "dziedzic": 2, "e": [0, 2, 3, 4], "e213": 2, "each": 4, "earli": 4, "earliest": 4, "eas": 4, "easi": 4, "easili": 4, "ec": [0, 2], "ecod": 4, "econom": 3, "editor": 2, "educ": 3, "edward": 2, "effect": [0, 2, 3, 4], "effici": [2, 3, 4], "effort": [3, 4], "eftekhar": 2, "ehsan": 2, "either": 4, "el": 2, "elabor": [0, 1, 3], "elast": 4, "electr": [2, 3, 4], "electro": [0, 2, 4], "electroabsorpt": 2, "electrod": [0, 2, 3, 4], "electromagnet": [2, 4], "electron": [2, 3, 4], "electrostat": 4, "element": 4, "elight": 2, "ellenbogen": 2, "ellipsometri": 4, "elvira": 2, "embed": [2, 4], "emerg": 4, "emitt": 4, "emploi": 4, "empti": 4, "enabl": [2, 3, 4], "enclos": 4, "encount": 4, "encrypt": 2, "end": [3, 4], "engin": [2, 3], "enhanc": 2, "ensur": 4, "entir": 4, "enz": 2, "epitaxi": [0, 2, 3], "epsilon": [2, 4], "eras": 4, "erc": 4, "eric": 2, "erin": 2, "erman": 2, "ernstoff": 2, "errando": 2, "especi": 4, "essenti": 3, "establish": 4, "estela": 2, "etc": 3, "etch": 3, "eun": 2, "eur": 3, "evanesc": [0, 3], "even": 4, "eventu": 4, "evgenia": 2, "evolut": 3, "evolutionari": 2, "exampl": 4, "excel": 4, "except": 4, "exchang": 2, "excit": 4, "execut": 1, "exist": 3, "exit": 4, "expans": 4, "expect": 0, "experiment": 2, "expert": 1, "explor": 0, "expos": 4, "express": 2, "extract": 4, "extrem": 4, "eyal": 2, "ezhov": 2, "f": [2, 4], "f14": [0, 2], "f20": 2, "fabric": [2, 3, 4], "fai": 2, "faiyaz": 2, "fall": [0, 2, 4], "faraji": 2, "faraon": 2, "farfield": 4, "fast": [3, 4], "faster": 4, "fatih": 2, "favalora": 2, "favia": [0, 2], "featur": 4, "feb": [0, 2], "februari": 0, "fed": 4, "federico": 2, "fei": 2, "feigenbaum": 2, "feng": 2, "fern": 2, "ferraro": 2, "ferrera": 2, "fiber": 2, "field": [0, 2, 3, 4], "fig": [3, 4], "figur": 2, "file": 2, "fill": 3, "film": [0, 2, 3, 4], "filter": 2, "fine": 4, "firehun": 2, "first": [2, 3, 4], "fishnet": [2, 4], "flat": [2, 4], "fleet": 2, "flexibl": 2, "fo": 4, "focus": [3, 4], "foot": 4, "forc": 4, "form": [3, 4], "format": 2, "fortunato": 2, "found": [0, 3, 4], "fphy": 2, "franc": [0, 2], "frank": 2, "fraser": 2, "free": [2, 4], "frequenc": [2, 4], "friedman": 2, "from": [0, 1, 2, 3, 4], "front": 2, "frontier": 2, "full": [2, 3, 4], "fulli": 3, "function": [0, 2], "fundament": 2, "further": 4, "futur": 3, "g": [2, 3, 4], "gabor": 3, "gain": 4, "gallium": 4, "gaofeng": 2, "gate": [2, 4], "ge": 2, "ge_2sb_2te_5": 4, "gehlhaar": [0, 1, 2], "geivandov": 2, "gendt": [0, 2], "gener": [0, 2, 3, 4], "geno": [0, 1, 2], "geoffrei": 2, "georgia": 2, "gerald": 2, "geumbong": 2, "ghazaleh": 2, "gholipour": 2, "gi": 2, "gil": 2, "ginlei": 2, "given": 4, "gjess": 2, "glembocki": 2, "go": 4, "goal": 3, "goe": 3, "goetz": 2, "gold": [2, 4], "good": [3, 4], "gorkunov": 2, "gradual": 4, "grate": [0, 2, 4], "green": 3, "greg": 2, "gregg": 2, "grigoropoulo": 2, "groundwork": 4, "grown": [0, 2], "growth": [0, 1, 2], "gst": 4, "guanghui": 2, "guangya": 2, "guangyuan": 2, "guanx": 2, "guid": [2, 3, 4], "guillaum": [0, 1, 2, 4], "guo": 2, "guocui": 2, "guox": 2, "gururaj": 2, "gyejung": 2, "gylfason": 2, "h": [2, 4], "ha": [0, 1, 2, 3, 4], "hae": 2, "hame": 2, "hamid": 2, "han": 2, "hand": 4, "handbook": 2, "hao": 2, "haogang": 2, "hardwar": 3, "harri": 2, "hasnain": 2, "have": [0, 1, 3, 4], "he": [1, 2, 3], "heat": 4, "heater": 4, "hee": 2, "heejeong": 2, "heinz": 2, "hemmatyar": 2, "henc": 4, "hendler": 2, "hendrik": 2, "heon": 2, "here": 4, "hereman": [0, 1, 2], "herman": 0, "herranz": 2, "heterostructur": [2, 4], "hideo": 2, "high": [0, 2], "higher": 4, "highest": 3, "highli": 4, "highlight": 4, "hinder": 4, "hiromi": 2, "hiroshi": 2, "hiroyuki": 2, "hlenbernd": 2, "ho": 2, "hobb": 2, "hojun": 2, "holger": 2, "hologram": [0, 1, 2, 3, 4], "holograph": [0, 2, 3, 4], "holographi": [0, 1, 2], "holsteen": 2, "homogen": 4, "hong": 2, "hongjun": 2, "honglin": 2, "hongwei": 2, "hoon": 2, "hori": 2, "horizon": 3, "horizont": 3, "horslei": 2, "hosono": 2, "hossein": 2, "hosseini": 2, "host": 1, "hot": 4, "howard": 2, "howev": [3, 4], "hsiang": 2, "hsieh": 2, "hsu": [0, 2], "hsuan": [0, 1, 2, 3], "http": 2, "hu": 2, "hua": 2, "huang": 2, "hudson": 2, "huge": 3, "hugh": 4, "hui": 2, "huimin": 2, "hun": 2, "hung": 2, "hwan": 2, "hwang": 2, "hybrid": 2, "hydrogen": 4, "hyeonho": 2, "hyo": 2, "hysteresi": 2, "hyuck": 2, "hyun": 2, "hyung": 2, "hyunsoo": 2, "hz": [3, 4], "i": [1, 2, 3, 4], "ian": 2, "ichikawa": 2, "ideal": 4, "identifi": 3, "iedm": 2, "ieee": [0, 2], "igal": 2, "igzo": [2, 4], "il": 2, "illumin": 4, "ilya": 2, "imag": [2, 3, 4], "imec": 1, "impact": 3, "implement": 4, "impress": 4, "imprint": 3, "improv": [3, 4], "impur": 4, "incid": 4, "includ": [2, 4], "inclus": 4, "incorpor": 4, "inde": 4, "independ": [2, 4], "index": [2, 3, 4], "indic": [2, 3, 4], "indium": [2, 4], "individu": 4, "induc": 2, "industri": [3, 4], "inerti": 4, "infiltr": 2, "influenc": 4, "inform": [2, 3], "infrar": [2, 4], "ingazno": 3, "inhomogen": 2, "initi": 4, "innov": 3, "inoh": 2, "inou": 2, "inp": 2, "input": 1, "inset": 4, "insid": 4, "instead": 4, "institut": 1, "instrument": 2, "insul": [2, 4], "integr": [0, 2, 4], "intend": 3, "intens": 4, "interact": [2, 3], "interest": 4, "interestingli": 4, "interfac": [0, 2, 3, 4], "interfaci": [0, 2], "intern": 2, "introduc": 4, "investig": 4, "invit": 2, "io": 2, "ipr": 2, "ir": [2, 4], "irina": 2, "iron": 4, "isabel": 2, "islam": [0, 2], "isotropi": 2, "ito": [2, 4], "its": [0, 2, 4], "ivan": 2, "iyer": 2, "j": [0, 2], "jae": 2, "jaeduck": 2, "jaffrai": 2, "jagadish": 2, "jamblinn": 2, "jame": 2, "jan": [0, 1, 2], "jang": 2, "janneck": 0, "janusz": [0, 2], "japanes": 2, "jason": 2, "jcrysgro": [0, 2], "jeong": 2, "jere": 2, "jeremi": [1, 2], "jeremiah": 2, "ji": 2, "jiachen": 2, "jiaguang": 2, "jiahao": 2, "jiajia": 2, "jiajun": 2, "jianfeng": 2, "jiang": 2, "jianp": 2, "jianquan": 2, "jianxiong": 2, "jie": 2, "jihyun": 2, "jin": 2, "jing": 2, "jinghua": 2, "jingxuan": 2, "jingyi": 2, "jingyu": 2, "jinqiannan": 2, "jisan": 2, "jisoo": 2, "jitao": 2, "jjap": 2, "jo": 2, "johnson": 2, "jolli": 2, "jon": 2, "jonathan": 2, "jong": 2, "jongbum": 2, "joul": 4, "journal": 2, "journei": 3, "jphot": 2, "ju": 2, "juan": 2, "juli": [0, 2], "jun": 2, "june": 2, "jung": 2, "junghyun": 2, "jungwoo": 2, "junqiao": 2, "junyeob": 2, "just": 4, "j\u00fcrgen": 2, "k": 2, "kafai": 2, "kai": 2, "kaichen": 2, "kaifeng": 2, "kamali": 2, "kamin": 2, "kamran": 2, "kan": 2, "kanbayashi": 2, "kang": 2, "karel": 2, "kasyanova": 2, "kathleen": 2, "kathrin": 2, "kato": 2, "katrin": 2, "kaviani": [0, 2], "kawamoto": 2, "kawasaki": 2, "kazumi": 2, "ke": 2, "kenchi": 2, "kenneth": 2, "khoo": 2, "ki": 2, "kim": 2, "kitzerow": 2, "kivshar": 2, "klamkin": 2, "knowledg": [3, 4], "known": [3, 4], "kodama": 2, "korablev": 2, "korytov": [0, 2], "krasavin": 2, "krasnok": 2, "kremer": 2, "kriesch": 2, "krishnan": 2, "kristina": 2, "kristinn": 2, "kuan": 2, "kuleuven": [0, 2], "kun": 2, "kusunoki": 2, "kuznetsov": 2, "kwiek": 2, "kwon": 2, "kyle": 2, "kyoung": 2, "kyoungho": 2, "kyoungsik": 2, "kyunghe": 2, "kyungmok": 2, "l": 2, "lab": 3, "laid": 4, "lamacchia": 2, "landi": 2, "larg": [2, 3], "larger": 4, "laser": [0, 2, 3, 4], "last": 4, "lastli": 4, "later": 4, "lattic": [3, 4], "lavrinenko": 2, "layer": [2, 3, 4], "lc": 4, "lcd": 4, "lco": [2, 4], "le": 2, "lead": [3, 4], "leadership": 1, "leak": 2, "leaki": [2, 3, 4], "lee": 2, "lei": 2, "leister": 2, "len": [2, 4], "lens": [2, 4], "letian": 2, "letter": 2, "leupp": 2, "leuven": [0, 2], "leverag": 4, "levinstein": 2, "li": [1, 2], "liang": 2, "lidar": [2, 3, 4], "light": [0, 2, 3, 4], "lili": 2, "limit": [3, 4], "lin": 2, "linbo3": 2, "lind": 2, "line": 1, "linear": [0, 2, 4], "ling": 2, "lingl": 2, "lingyun": 2, "link": 4, "liquid": 2, "liqun": 2, "lishu": 2, "litao3": 2, "lithium": 2, "lithographi": 2, "littl": 2, "liu": 2, "ln": 4, "local": [3, 4], "lohmann": 4, "lokesh": 2, "long": [2, 4], "longcheng": 2, "longer": 4, "longitudin": 2, "longq": 2, "look": 3, "lopez": 2, "loss": [2, 3, 4], "lou": 2, "low": [2, 3, 4], "lower": 4, "lpor": 2, "lsa": 2, "lu": 2, "luca": 2, "lun": 2, "luo": 2, "lyong": 2, "m": [0, 2, 4], "ma": 2, "ma11102040": 2, "ma2022": [0, 2], "ma5040661": 2, "made": 4, "maeda": 2, "magnesium": 4, "magnet": 4, "mahmood": 2, "mahon": 2, "mahsa": 2, "mai": [0, 2], "maier": 2, "major": 3, "make": [2, 3, 4], "mamonova": 2, "manag": 4, "manganes": 4, "mani": [3, 4], "manjappa": 2, "manuel": 2, "manufactur": 4, "manukumara": 2, "manuscript": 0, "marcel": 2, "marcello": 2, "march": [0, 2, 3], "mariano": 2, "mario": 2, "mark": 2, "markiewicz": 2, "mart": 2, "martin": 2, "martinson": 2, "mask": 1, "match": 3, "materi": [1, 2, 3, 4], "matter": 4, "matthia": 2, "matur": 4, "maxim": [0, 2, 4], "maximum": 4, "mayer": 2, "mbe": [0, 2, 3], "mcknight": 2, "mcmillen": 2, "me4": 2, "measur": 4, "mechan": 2, "medium": 2, "meet": [0, 2, 4], "megen": 2, "mei": 2, "melt": 4, "mem": [2, 4], "meng": 2, "mention": 4, "merckl": [0, 1, 2], "meta": [2, 4], "metacanva": 2, "metadevic": 2, "metafilm": 2, "metal": [3, 4], "metalen": 4, "metalens": 4, "metamateri": [0, 1, 2, 4], "metasurfac": [2, 4], "method": [0, 2, 3, 4], "methodologi": 4, "metric": 4, "metrologi": 3, "meux": 2, "mg": 4, "mi10080505": 2, "michael": 2, "michel": 2, "microelectromechan": 2, "micromachin": 2, "micromet": 4, "microscop": 4, "microscopi": 3, "mid": 2, "midkiff": 2, "might": 4, "mike": 2, "mim": 4, "min": 2, "ming": 2, "mingbo": 2, "minghui": 2, "minor": 4, "minovich": 2, "miroshnichenko": 2, "mirror": 2, "mischa": 2, "mix": 2, "mm": [1, 3], "mo": 2, "mobil": 3, "mock": 2, "mode": [2, 4], "model": [0, 1, 2, 3, 4], "modern": 0, "modul": [0, 2, 3], "moebiu": 2, "mohammad": 2, "mohd": 2, "mok": 2, "molecul": 4, "molecular": 3, "moloud": [0, 2], "moment": 4, "mondai": [0, 2], "mont": 2, "more": [0, 3, 4], "moresco": 2, "most": 4, "mostafa": 2, "mostli": 4, "move": [2, 3], "movement": 4, "mr": [0, 2], "mrs2000": 2, "mrs2007": 2, "mu": 4, "much": 4, "mukesh": 2, "mulda": 2, "muldarisnur": 2, "multi": 2, "multiband": 2, "multichannel": 2, "multicolor": 4, "multifunct": 2, "multipl": 4, "multiplex": 2, "multitud": 4, "musgrav": 2, "my": 4, "n": [2, 4], "na": 2, "naik": 2, "name": 4, "nano": [2, 3, 4], "nano8110871": 2, "nanodevic": 2, "nanoelectromechan": 2, "nanolett": 2, "nanomateri": 2, "nanomet": 3, "nanoph": 2, "nanophoton": 2, "nanopillar": 0, "nanoplasmon": 2, "nanoscal": 2, "nanosecond": 3, "nanospher": [2, 4], "nanotechnologi": 2, "naoya": 2, "naru": 2, "nassau": 2, "natur": [2, 4], "nature11727": 2, "nature12217": 2, "nauer": 2, "navab": 2, "ndez": 2, "nealei": 2, "need": [3, 4], "neg": [2, 4], "negro": 2, "neither": 3, "nemat": 2, "nemati": 2, "neshev": 2, "netta": 2, "neubrech": 2, "nevertheless": 4, "new": [2, 3], "next": [3, 4], "nguez": 2, "ni": 2, "nichola": 2, "nicola": 2, "nikola": 2, "nikolai": [0, 2], "niobat": 2, "nitrid": 2, "nl1006307": 2, "nl4006194": 2, "nl502998z": 2, "nm": [2, 3, 4], "nnano": 2, "nobel": 3, "noh": 2, "non": [0, 2], "nonlinear": 0, "nonvolatil": 4, "nor": 3, "norbert": 2, "normal": 4, "notabl": 4, "note": [2, 4], "noteworthi": 4, "notic": 4, "nouman": 2, "novel": 3, "novemb": 0, "now": 4, "nowadai": 4, "nphoton": 2, "numer": [3, 4], "o": [2, 4], "observ": 4, "obtain": [3, 4], "occupi": 4, "occur": 4, "octob": [0, 2, 3], "oe": 2, "oea": 2, "off": 4, "offer": 4, "often": 4, "ok": 2, "ol": 2, "om": 2, "omid": 2, "one": [3, 4], "onli": [2, 4], "onlin": [0, 2], "onward": 4, "oper": [2, 4], "optcom": 2, "optic": [0, 1, 2, 3], "optica": 2, "optim": [1, 2], "opto": 2, "orbit": 2, "order": [0, 2, 4], "organ": 0, "orient": 4, "origin": [2, 4], "osa": 2, "osofski": 2, "other": [3, 4], "otsuka": 2, "our": 3, "out": 4, "outcoupl": 4, "ouyang": 2, "over": [3, 4], "overview": 2, "oxid": [0, 1, 2, 3, 4], "oxygen": [2, 4], "p": [0, 2], "pablo": 2, "padilla": 2, "page": 2, "pain": 2, "pala": 2, "palik": 2, "panel": 4, "paola": [0, 2], "papadaki": 2, "paper": 2, "paradigm": 2, "paramet": [2, 4], "park": 2, "part": 2, "pattern": [0, 2, 3, 4], "paul": [0, 1, 2], "pbte": 4, "pc12196": [0, 2], "pc1219619": [0, 2], "pdf": 2, "pei": 2, "pendri": 2, "perciev": 4, "perfect": [2, 4], "perform": [0, 1, 2], "period": 4, "perman": 4, "permeabl": 2, "permiss": 4, "permitt": [2, 4], "perovskit": [0, 2], "perspect": [3, 4], "peschel": 2, "peter": 2, "peterson": 2, "pez": 2, "phase": [2, 4], "phd": [2, 3, 4], "photo": 4, "photochrom": 4, "photograph": [3, 4], "photon": [0, 2, 4], "photonics8080292": 2, "photonix": 2, "photorefract": 4, "photoresist": 3, "photovolta": 2, "physic": [0, 2], "physica": 2, "physrevb": 2, "physrevlett": 2, "pi": [2, 4], "pictori": 2, "pierr": 2, "piezoelectr": 4, "pin": 2, "ping": 2, "pioneer": 4, "piotr": 2, "piqu": 2, "pitch": [3, 4], "pitchappa": 2, "pixel": 4, "plai": 3, "planar": 2, "plane": [3, 4], "plasmon": [2, 4], "plasmostor": 2, "plate": 4, "platform": [0, 2, 3, 4], "pld": [0, 2, 3], "po": [0, 2], "pockel": [0, 3, 4], "podraza": 2, "pogrebnyakov": 2, "point": 4, "polar": [0, 2], "polym": 4, "polysilicon": 2, "pop": 2, "popul": 4, "posit": [2, 4], "possibl": [1, 3, 4], "post": 4, "pourtoi": 2, "powel": 2, "power": [2, 4], "pp": 0, "practic": [3, 4], "pragu": 0, "prakash": 2, "prasad": 2, "precis": 3, "predict": [0, 2], "prepar": [0, 1], "presenc": 3, "present": [0, 4], "preserv": 2, "press": 2, "pressur": 4, "preval": 4, "primarili": 4, "principl": [2, 4], "prism": [2, 4], "prize": 3, "probe": 4, "proc": [0, 2], "process": [1, 2, 3], "prof": 1, "profil": [3, 4], "programm": [2, 3], "progress": 3, "project": [0, 1, 4], "projector": [3, 4], "proke": 2, "proklov": 2, "promin": 4, "promis": 4, "proof": 4, "propag": [2, 3], "properti": [0, 2, 4], "propos": 3, "prospect": 4, "proton": 2, "prove": [3, 4], "provid": [1, 4], "pruessner": 2, "psalti": 2, "pseudo": [0, 2], "pssa": 2, "pu": 2, "publish": 0, "puls": [0, 2, 3, 4], "push": 4, "puybaret": [0, 1, 2], "pva": 4, "pzt": 2, "q": 2, "qaderi": 2, "qi": 2, "qian": 2, "qiong": 2, "qiu": 2, "qixuan": 2, "quan": 2, "quantum": [0, 2], "quarter": 3, "quickli": 4, "r": 2, "rabinovich": 2, "radiat": [2, 4], "radic": 3, "rae": 1, "ragip": 2, "rai": 2, "rais": 4, "ralf": 2, "ran": 2, "rang": [2, 4], "ranjan": 2, "rapid": 4, "rare": 4, "rate": [3, 4], "rather": 4, "ra\u00fal": 2, "rc": 4, "re": [3, 4], "reach": [2, 3, 4], "read": 4, "reader": 4, "real": 2, "realis": 1, "realiti": [2, 3], "realiz": 3, "realm": 4, "reason": 3, "receiv": [1, 3], "recent": [2, 3, 4], "reconfigur": 2, "reconstruct": 4, "record": [2, 4], "rectangl": 4, "red": 3, "redistribut": 4, "refer": [3, 4], "reflect": [2, 4], "refract": [2, 3, 4], "refresh": 4, "regim": [2, 4], "regular": 2, "reichelt": 2, "rel": [3, 4], "relev": 4, "reli": 4, "remain": 4, "remark": 4, "renaud": [0, 2], "renauld": 1, "reorient": 4, "report": [2, 4], "reproduc": 4, "reprogramm": [0, 2, 4], "republ": 0, "request": 3, "requir": [3, 4], "research": [1, 2, 3, 4], "reset": 4, "resid": 4, "resist": 4, "resler": 2, "resolut": [0, 2, 3, 4], "resolv": 2, "reson": [2, 4], "respect": 4, "respond": 4, "respons": 4, "result": [0, 4], "retain": 4, "return": 4, "review": [2, 4], "rewrit": [2, 4], "rgb": 4, "richardson": 2, "right": 4, "ring": [2, 4], "rise": 4, "rita": 2, "rivero": 2, "roadblock": 3, "roadmap": 3, "robbi": 0, "robert": [0, 1, 2], "roel": [0, 2], "roger": 2, "rogier": 2, "roi": 2, "role": 4, "rolin": 0, "rongbo": 2, "root": 4, "rui": 2, "ruizh": 2, "rusak": 2, "rust": 2, "ruzan": 2, "ryo": 2, "ryu": 2, "s40580": 2, "s41467": 2, "s41565": 2, "s41586": 2, "s41598": 2, "s43074": 2, "s43593": 2, "sabuncuoglu": 1, "sadegh": 2, "safeti": 3, "saha": 2, "sai": 2, "said": 4, "sajjad": 2, "sajuyigb": 2, "salinga": 2, "same": [3, 4], "san": [0, 2], "sanchit": 2, "sangwook": 2, "sankhyabrata": 2, "sautter": 2, "sb": 2, "scale": [2, 3, 4], "scan": 4, "scanner": 2, "scatter": [3, 4], "scenario": 4, "sch": 2, "schell": 2, "schemat": 4, "scheme": [3, 4], "schuller": 2, "schultz": 2, "sciadv": 2, "scienc": [2, 3], "scientif": [1, 2, 3], "scope": 4, "scribe": 4, "second": [0, 4], "section": 4, "see": [0, 1, 3], "seger": 1, "select": [2, 4], "sem": 4, "semiconductor": [3, 4], "sens": 4, "sensor": 4, "seok": 2, "seong": 2, "separ": [3, 4], "septemb": [0, 2], "sequenc": 1, "serv": 4, "set": 4, "seung": 2, "seunghoon": 2, "sever": [1, 3, 4], "seyedeh": 2, "shadow": 4, "shadrivov": 2, "shah": 2, "shalaev": 2, "shallow": 4, "shaltout": 2, "shao": 2, "shaowei": 2, "shaoxian": 2, "shape": [0, 2, 4], "sharma": 2, "sharp": 2, "shelbi": 2, "shell": 4, "shi": 2, "shift": 4, "shifter": 4, "shin": 2, "shirmanesh": 2, "short": [2, 4], "shoujun": 2, "should": [3, 4], "shoulder": 4, "show": [3, 4], "showcas": 4, "shown": 4, "shuai": 2, "shuang": 2, "shufang": 2, "shun": 2, "shuyan": 2, "si": [0, 2], "side": [2, 4], "signal": [2, 3], "sik": 2, "silei": 2, "silicon": [0, 2, 3, 4], "silver": 2, "simdyankin": 2, "similar": 4, "similarli": 4, "simon": 2, "simul": [3, 4], "sin": 3, "sinc": 4, "singh": 2, "singl": [0, 2, 4], "singleton": 2, "situat": 4, "size": 4, "slab": 3, "slightli": 4, "sliwinski": 2, "slm": 4, "slot": 2, "slow": [2, 3], "slower": 4, "small": [3, 4], "smallei": 2, "smart": 2, "smith": 2, "smithwick": 2, "smolentsev": [0, 2], "so": 4, "social": 3, "soham": 2, "sokhoyan": 2, "solar": 4, "solid": 2, "solidi": 2, "solv": 4, "some": 4, "song": 2, "sonnefraud": 2, "soo": 2, "sourc": 3, "space": [2, 4], "spatial": [0, 2, 4], "spatiotempor": 2, "special": [2, 4], "specif": 4, "spectral": 4, "spectropolarimetri": 2, "speed": [3, 4], "spie": [0, 2], "spin": 2, "split": [2, 4], "spring": [0, 2], "squar": 3, "srep08660": 2, "srep11678": 2, "srep15754": 2, "srep41152": 2, "srr": 4, "srtio": [0, 3], "srtio3": [0, 2], "stabl": 4, "stack": [1, 4], "stadler": 2, "stai": 4, "standard": [3, 4], "stanlei": 2, "stapl": 4, "start": [3, 4], "state": [0, 2], "static": [3, 4], "statu": 2, "staud": 2, "steadili": 4, "steer": [2, 4], "steerd": 4, "steerer": 4, "stefan": [0, 2], "step": [3, 4], "stephan": 2, "still": 4, "sto": 1, "stoichiometr": 4, "storag": [2, 4], "store": [3, 4], "straightforward": 4, "strain": 4, "strake": 2, "strasbourg": [0, 2], "stress": 2, "stretch": 4, "strong": [0, 1, 4], "structur": [2, 4], "studi": [0, 2], "sub": [0, 2, 3], "subject": 1, "subsect": 4, "subsequ": 3, "substrat": [0, 2, 4], "subwavelength": [0, 2, 4], "suffici": [3, 4], "suitabl": 4, "sukjoon": 2, "summanwar": 2, "summar": [3, 4], "sun": 2, "sundeep": 2, "sung": 2, "superposit": 4, "supervis": 1, "suppl": 2, "suppli": 4, "support": [0, 1], "surfac": 4, "swap": [3, 4], "swave": [2, 4], "swir": 2, "switch": [2, 3, 4], "switchabl": 2, "symposium": 0, "system": 2, "t": [2, 4], "tabl": [0, 1], "tackl": 4, "tadashi": 2, "tae": 2, "tag": 2, "taghinejad": 2, "tail": 4, "take": 1, "tal": 2, "tang": 2, "tao": 2, "tapashre": 2, "target": 4, "tatsuhiro": 2, "tatsuya": 2, "taubner": 2, "tayyab": 2, "tco": 4, "te": 2, "techniqu": 4, "technologi": [1, 2, 3, 4], "teichrib": 2, "teimourpour": 2, "telecommun": 2, "temperatur": [2, 4], "tempor": 2, "ten": 4, "tend": 4, "tendenc": 4, "teng": 2, "tensor": 4, "terahertz": 2, "term": 4, "tetsuya": 2, "tezcan": 1, "thei": [3, 4], "them": 4, "theoret": 4, "therefor": 3, "theresa": 2, "thermal": [2, 4], "thermo": 2, "thermoelectr": 4, "thesi": [2, 3], "thi": [0, 3, 4], "thick": 3, "thierri": [0, 2], "thin": [0, 2, 4], "thoma": [1, 2], "though": 4, "thought": 4, "thrane": 2, "three": [2, 4], "through": [0, 2, 3, 4], "thu": 4, "thyagarajan": 2, "thz": 4, "tian": 2, "tianbo": 2, "time": [2, 3, 4], "timurdogan": 2, "tin": 4, "ting": 2, "titan": [0, 2], "tobia": 2, "todai": 3, "tokei": 1, "tom": 2, "tong": 2, "too": [3, 4], "top": 4, "topic": 4, "toshihiko": 2, "toward": [0, 2, 3, 4], "traci": 2, "transduc": 4, "transfer": 3, "transistor": 4, "transit": [2, 4], "transmiss": [2, 4], "transpar": [0, 1, 2, 4], "trap": 4, "travel": 4, "trench": 3, "trend": 0, "treptow": 2, "triesault": 2, "trifunct": 2, "troccoli": 2, "true": [2, 4], "tsai": 2, "tsang": [0, 1, 2, 3], "tschudi": 2, "tseng": 2, "tsvetanova": 1, "tterer": 2, "tun": 2, "tunabl": [2, 4], "tune": [2, 4], "turpin": 2, "two": [1, 2, 3, 4], "type": [2, 3, 4], "typic": 4, "u": [2, 3], "ulf": 2, "ultra": 4, "ultracompact": 2, "ultrasound": 4, "ultraviolet": 4, "umberto": [0, 2], "unachiev": 4, "uncommon": 4, "under": 4, "undergo": 4, "understand": 4, "underwood": 2, "unfortun": 4, "uniform": 3, "uniqu": 4, "unit": [0, 1, 2, 4], "uniti": 2, "up": [2, 4], "upscal": 3, "url": 2, "us": [2, 3, 4], "usategui": 2, "ussler": 2, "usukura": 2, "util": 4, "uv": 4, "v": 2, "vacanc": [2, 4], "valeri": 2, "valu": 4, "van": 2, "vanadium": [2, 4], "vari": 4, "variat": [3, 4], "varieti": 4, "variou": 4, "vass": 2, "vasudev": 2, "veri": [3, 4], "verif": 2, "version": 4, "versu": 4, "vertic": 3, "vettes": 2, "via": 2, "viabl": 4, "video": [0, 1, 2, 4], "videoholograph": 4, "view": 4, "viii": 0, "viktoriia": 2, "visibl": [2, 3, 4], "vladimir": 2, "vo_2": 4, "vol": 2, "volatil": 2, "voltag": [2, 3, 4], "volum": 2, "w": 2, "wa": [3, 4], "wafer": [1, 3, 4], "wagner": 2, "wai": [2, 3], "wallac": 2, "wang": [0, 1, 2, 3], "wangshi": 2, "washington": 2, "watt": 2, "wave": [2, 3, 4], "wavefront": [0, 2], "waveguid": [0, 1, 2, 4], "wavelength": [0, 2, 3, 4], "we": [3, 4], "wei": 2, "weijian": 2, "weijun": 2, "weili": 2, "weim": 2, "weiner": 2, "well": 4, "wen": 2, "wenjun": 2, "wenshan": 2, "were": [3, 4], "weren": 4, "werner": 2, "weslei": 2, "when": [3, 4], "whenev": 4, "where": [3, 4], "wherea": 4, "wherein": 3, "which": [3, 4], "whole": 4, "wide": [2, 3, 4], "william": 2, "wise": 4, "without": [1, 3, 4], "won": 2, "woo": 2, "wook": 2, "woong": 2, "work": [0, 4], "world": [2, 3], "would": 1, "writabl": 4, "write": [3, 4], "wu": 2, "wuttig": 2, "x": 2, "xi": [0, 2], "xiangang": 2, "xiangh": 2, "xianyi": 2, "xiao": 2, "xiaodi": 2, "xiaog": 2, "xiaoguang": 2, "xiaoliang": 2, "xiaolong": 2, "xiaosheng": 2, "xie": 2, "xieyu": 2, "xingbo": 2, "xinwan": 2, "xinyuan": 2, "xiong": 2, "xml": 2, "xu": 2, "xue": 2, "xueqian": 2, "xx": 1, "y": 2, "yaacobi": 2, "yamashita": 2, "yan": 2, "yanfeng": 2, "yang": 2, "yannick": 2, "yao": 2, "yate": 2, "year": 4, "yeo": 2, "yeol": 2, "yeon": 2, "yet": [3, 4], "yi": 2, "yibo": 2, "yield": 3, "yiguo": 2, "yijia": 2, "yinghui": 2, "yong": 2, "yongtian": 2, "yoo": 2, "yoon": 2, "you": 2, "youb": 2, "youmin": 2, "youn": 2, "young": 2, "yu": 2, "yuan": 2, "yuanmu": 2, "yue": 2, "yuehong": 2, "yuhua": 2, "yuma": 2, "yun": 2, "yunhui": 2, "yunlong": 1, "yuri": 2, "yuuichi": 2, "yuyao": 2, "zang": 2, "zayat": 2, "zengxia": 2, "zentgraf": 2, "zero": [2, 4], "zhang": 2, "zhao": 2, "zhaolin": 2, "zheludev": 2, "zhen": 2, "zhenci": 2, "zheng": 2, "zhenh": 2, "zhongyuan": 2, "zhou": 2, "zhu": 2, "zichen": 2, "ziji": 2, "zilun": 2, "zinc": 4, "zno": [2, 4], "zou": 2, "zsolt": 1, "\u00df": 2, "\u00e1": 2, "\u00e4": 2, "\u00e9": 2, "\u00ed": 2, "\u00f3": 2, "\u00f6": 2, "\u00f9": 2, "\u00fc": 2}, "titles": ["ERC Publications", "ERC Team", "Bibliography", "Video Holography: summary", "State-of-the-Art overview: Modulation mechanisms for dynamic holography"], "titleterms": {"academ": 1, "acousto": 4, "applic": 3, "art": 4, "bibliographi": 2, "bto": 3, "carrier": 4, "challeng": 3, "confer": 0, "contributor": 1, "core": 1, "crystal": 4, "develop": 3, "dope": 4, "dynam": 4, "electromechan": 4, "en": 3, "erc": [0, 1, 3], "fund": 3, "further": 3, "high": 3, "histori": 3, "holographi": [3, 4], "implement": 3, "info": 3, "inject": 4, "introduct": 3, "investig": 1, "journal": 0, "liquid": 4, "lithium": 4, "main": 3, "mechan": 4, "metamateri": 3, "micro": 4, "modul": 4, "niobat": 4, "optic": 4, "other": 1, "overview": 4, "paper": 0, "phd": [0, 1], "princip": 1, "project": 3, "public": 0, "qualiti": 3, "remain": 3, "result": 3, "select": 3, "senior": 1, "short": 3, "staff": 1, "state": 4, "student": 1, "summari": 3, "system": 4, "target": 3, "team": 1, "thermo": 4, "thesi": 0, "video": 3, "waveguid": 3, "work": 3}}) \ No newline at end of file diff --git a/sota.html b/sota.html index cf90e4b..1d402bc 100644 --- a/sota.html +++ b/sota.html @@ -314,7 +314,7 @@

State-of-the-Art overview: Modulation mechanisms for dynamic holographyFig. 4. The most relevant metrics are the hologram pixel resolution and the refresh rate. The target for the hologram pixel resolution is defined by the 180 degree blue diffraction angle. -The target for the refresh rate is 360 Hz, as this allows to swap sufficiently fast the RGB colours of the 3 lasers without causing artefacts that are can be noticed.

+The target for the refresh rate is 360 Hz, as this allows to swap sufficiently fast the RGB colours of the 3 lasers without causing artifacts that are can be noticed.

@@ -327,8 +327,8 @@

State-of-the-Art overview: Modulation mechanisms for dynamic holography

Doped Lithium Niobate#

-

Various doped Lithium Niobate (LN) crystals show a photorefractive effect, i.e. when locally exposed to light, they change in refractive index.[10] Originally, this effect was thought to be optical damage to the LN, but Iron impurities were quickly found to be the root cause.[11, 12] Afterwards, a wide range of dopants were employed, each offering different results in spectral response and writability.[13]

-

The effect originates due to redistribution of charges, which causes electric fields to form inside the crystal. Said fields, through the Pockels effect change the refractive index. Homogeneous illumination can be used to probe the modulated refractive index but has a tendency to erase the stored data depending on intensity and wavelength. Similarly, the stored data can be reset by a thermal anneal. More advanced crystals employ two separate dopants to create a photochromic behaviour in which the absorption changes when illuminated with a certain wavelength. One notable example is the combined use of Iron and Manganese, which form shallow and deep traps respectively.[14] Here, the shallow traps initially tend to be empty and can become populated after the deep traps are excited by ultraviolet (UV) light. The crystal then gains an absorption shoulder at longer wavelengths corresponding to the population of the shallow traps. This proofs useful for nonvolatile holographic storage as recordings can be made using a combination of short and long wavelengths, after which reading can be done using just the long wavelength for which the deep traps do not respond. This re-writability made this set of materials very interesting for holographic storage.[15] Unfortunately, the write-rewrite speed remains too low for any practical holographic display.

+

Various doped Lithium Niobate (LN) crystals show a photorefractive effect, i.e. when locally exposed to light, they change in refractive index.[10] Originally, this effect was thought to be optical damage to the LN, but Iron impurities were quickly found to be the root cause.[11, 12] Afterwards, a wide range of dopants were employed, each offering different results in spectral response and writability.[13]

+

The effect originates due to redistribution of charges, which causes electric fields to form inside the crystal. Said fields, through the Pockels effect change the refractive index. Homogeneous illumination can be used to probe the modulated refractive index but has a tendency to erase the stored data depending on intensity and wavelength. Similarly, the stored data can be reset by a thermal anneal. More advanced crystals employ two separate dopants to create a photochromic behaviour in which the absorption changes when illuminated with a certain wavelength. One notable example is the combined use of Iron and Manganese, which form shallow and deep traps respectively.[14] Here, the shallow traps initially tend to be empty and can become populated after the deep traps are excited by ultraviolet (UV) light. The crystal then gains an absorption shoulder at longer wavelengths corresponding to the population of the shallow traps. This proofs useful for nonvolatile holographic storage as recordings can be made using a combination of short and long wavelengths, after which reading can be done using just the long wavelength for which the deep traps do not respond. This re-writability made this set of materials very interesting for holographic storage.[15] Unfortunately, the write-rewrite speed remains too low for any practical holographic display.

Liquid Crystals#

@@ -340,7 +340,7 @@

Liquid CrystalsFig. 5 a) Schematic of a tunable liquid crystal metamaterial. The metamaterial is patterned on the bottom electrode, whereas a brushed PVA layer ensures liquid crystal alignement at the top electrode. b) - c) Transmission behaviour for various wavelengths and bias of the LC cell shown in a). Supplying sufficient bias switches the transmission. The insets show the orientation of the liquid crystals. d) Photograph of holographic reconstruction projected by a LC spatial light modulator (SLM). e) Schematic of a LC cell employing electrodes to create tunable gratings. f) Outcoupling intensity for a grating with \(6\mu m\) period as shown in e). Images adapted from [20, 23, 24].#

-

More recently, liquid crystals are being considered as active component in tunable metasurfaces. Indeed, metasurfaces have shown excellent control over incident light in the context of lenses, plasmonics and beam shaping. On top of that, they have shown properties that are unachievable with normal materials such as perfect absorption and negative refractive indices.[25, 26, 27] However, their use cases remain limited due to their static nature. Hence, recent works aim to create tunable metasurfaces. Numerous, excellent reviews cover the field of dynamic metasurfaces.[28, 29, 30, 31, 32, 33, 34, 35, 36]. The groundwork for LC metasurfaces was laid when they were considered in split ring resonators (SRR) and core-shell nanosphere metamaterials.[37, 38] Through the years, their tuning architecture and feature size was improved and downscaled respectively, pushing these devices gradually into the visible optical regime. However, rapid switching and individual pixel addressing remains absent. Multiple approaches attempt to tackle this challenge including SRR’s, embedded fishnet metamaterials, meta-atoms and LC enabled plasmonics.[23, 24, 39, 40, 41, 42, 43, 44] A selected set of these is shown in Fig. 4 .

+

More recently, liquid crystals are being considered as active component in tunable metasurfaces. Indeed, metasurfaces have shown excellent control over incident light in the context of lenses, plasmonics and beam shaping. On top of that, they have shown properties that are unachievable with normal materials such as perfect absorption and negative refractive indices.[25, 26, 27] However, their use cases remain limited due to their static nature. Hence, recent works aim to create tunable metasurfaces. Numerous, excellent reviews cover the field of dynamic metasurfaces.[28, 29, 30, 31, 32, 33, 34, 35, 36]. The groundwork for LC metasurfaces was laid when they were considered in split ring resonators (SRR) and core-shell nanosphere metamaterials.[37, 38] Through the years, their tuning architecture and feature size was improved and downscaled respectively, pushing these devices gradually into the visible optical regime. However, rapid switching and individual pixel addressing remains absent. Multiple approaches attempt to tackle this challenge including SRR’s, embedded fishnet metamaterials, meta-atoms and LC enabled plasmonics.[23, 24, 39, 40, 41, 42, 43, 44] A selected set of these is shown in Fig. 4 .

Thermo-Optics#

@@ -349,21 +349,21 @@

Thermo-Optics Thermo-Optics
-

Fig. 6 a)Optical behaviour of commonly employed phase change material GST, which can be switched between amorphous and crystalline phases. b) The effect of the different phases of a thin GST layer have on the reflectivity of an optical stack. c) Holographic projected of a GST patterned metasurface made tunable by laser scribing. d) Artists impression of the operation of a Magnesium based metasurface, which can undergo a phase change due to hydrogenation of the meta-atoms. e) SEM image of Magnesium meta-atoms and their scattering behaviour versus time. f) Holographic projection fo the device shown in d) and e). The optical is shown for various states of the phase change material to showcase its tunability. g) Artists impression of a GST metasurface, showing both write and read lasers. h) Optical behaviour of a GST metalens, ecoded in to the laser by laser writing. Images adapted from [45, 46, 47].#

+

Fig. 6 a)Optical behaviour of commonly employed phase change material GST, which can be switched between amorphous and crystalline phases. b) The effect of the different phases of a thin GST layer have on the reflectivity of an optical stack. c) Holographic projected of a GST patterned metasurface made tunable by laser scribing. d) Artists impression of the operation of a Magnesium based metasurface, which can undergo a phase change due to hydrogenation of the meta-atoms. e) SEM image of Magnesium meta-atoms and their scattering behaviour versus time. f) Holographic projection fo the device shown in d) and e). The optical is shown for various states of the phase change material to showcase its tunability. g) Artists impression of a GST metasurface, showing both write and read lasers. h) Optical behaviour of a GST metalens, ecoded in to the laser by laser writing. Images adapted from [45, 46, 47].#

-

Metasurfaces employing phase change materials have shown excellent results in a multitude of applications ranging from transmission and reflection tuning [48, 49, 50, 51, 52] to beam steering [53, 54].

+

Metasurfaces employing phase change materials have shown excellent results in a multitude of applications ranging from transmission and reflection tuning [48, 49, 50, 51, 52] to beam steering [53, 54].

For example, modulation depths of up to \(90\%\) have been achieved for absorption tuning [55], relative transmission changes of \(500\%\) have been reported [56] and beam steering angles up to \(40^{\circ}\) have been shown.[57]

-

Additionally, slightly more advanced metasurfaces have been used to create tunable metalenses.[47, 58]

-

Several approaches have even been able to go even one step further and have shown beam shaping and holography. Indeed, holographic metasurfaces have been made by hydrogenation-dehydrogenation of Mg meta-atoms [46], tuning of a resonance [45, 47, 59, 60, 61], and tunable split ring resonators.[62] Pixel sizes down to \(600nm\) have been achieved for devices operating in On-Off state (\(50\)s switch time). On the other hand, faster switching (\(500ns\) rise time - \(100\mu s\) fall time) is possible at slightly larger pixel size (\(4\mu m\)).

-

It should be noted that these approaches mostly employ longer wavelengths starting from the near IR to THz frequencies. On top of that, the meta-atom switching rate remains limited at the moment given that integrated heaters are only included in a minority of works such that others either rely on a laser pulse or hot plate for write-rewrite. The most impressive result currently has been achieved by SWAVE Photonics which managed to incorporate a modulated phase change material into a complete display stack, reaching pixel sizes down to \(300\)nm and video-rate capable refresh rates. This display almost reaches the requirements for a true videoholographic display.[63]

+

Additionally, slightly more advanced metasurfaces have been used to create tunable metalenses.[47, 58]

+

Several approaches have even been able to go even one step further and have shown beam shaping and holography. Indeed, holographic metasurfaces have been made by hydrogenation-dehydrogenation of Mg meta-atoms [46], tuning of a resonance [45, 47, 59, 60, 61], and tunable split ring resonators.[62] Pixel sizes down to \(600nm\) have been achieved for devices operating in On-Off state (\(50\)s switch time). On the other hand, faster switching (\(500ns\) rise time - \(100\mu s\) fall time) is possible at slightly larger pixel size (\(4\mu m\)).

+

It should be noted that these approaches mostly employ longer wavelengths starting from the near IR to THz frequencies. On top of that, the meta-atom switching rate remains limited at the moment given that integrated heaters are only included in a minority of works such that others either rely on a laser pulse or hot plate for write-rewrite. The most impressive result currently has been achieved by SWAVE Photonics which managed to incorporate a modulated phase change material into a complete display stack, reaching pixel sizes down to \(300\)nm and video-rate capable refresh rates. This display almost reaches the requirements for a true videoholographic display.[63]

Thermo-Optic Beam Steering
-

Fig. 7 a)- b) Schematic and microscope image of a waveguide fed beam steerer that employs thermo-optics phase shifters and outcoupling gratings. c) Schematic of an advanced \(8\) by \(8\) optical phased array that has independent control over each outcoupling element. d) Simulation and measured results from c), by applying various bias conditions. e) Schematic of a 2D beam steerer employing a lattice-shifted photonic crystal waveguide in combination with a prism lens. f) Measured farfield outcoupling from the device in patterns from the device in e). Images adapted from [64, 65, 66].#

+

Fig. 7 a)- b) Schematic and microscope image of a waveguide fed beam steerer that employs thermo-optics phase shifters and outcoupling gratings. c) Schematic of an advanced \(8\) by \(8\) optical phased array that has independent control over each outcoupling element. d) Simulation and measured results from c), by applying various bias conditions. e) Schematic of a 2D beam steerer employing a lattice-shifted photonic crystal waveguide in combination with a prism lens. f) Measured farfield outcoupling from the device in patterns from the device in e). Images adapted from [64, 65, 66].#

-

Alternatively, the thermo-optic coefficient can be used to tune the refractive index more directly. Here, at low temperatures, any variation leads to a linear change in refractive index. The effect is typically very small with coefficients ranging from \(10^{-6}\) to \(10^{-3} /^{\circ}C\).[67] Nevertheless, the effect is often used in waveguide or resonator structures given that it enables extremely fine control or that the resonance leads to amplification of the effect. Thermo-optically tuned waveguide modulators form an active topic in the field of light detection and ranging (LIDAR), since they can be used to create on chip beam steering platforms. Both one-dimensional (1D) [64, 68, 69] and 2D beam steering based on thermo-optical modulation has been shown.[65, 66, 70, 71, 72, 73, 74] One noteworthy example was the creation of a \(64\) by \(64\) optical phased array with individual phase shifters for each emitter, which theoretically could be used to create a holographic display.

+

Alternatively, the thermo-optic coefficient can be used to tune the refractive index more directly. Here, at low temperatures, any variation leads to a linear change in refractive index. The effect is typically very small with coefficients ranging from \(10^{-6}\) to \(10^{-3} /^{\circ}C\).[67] Nevertheless, the effect is often used in waveguide or resonator structures given that it enables extremely fine control or that the resonance leads to amplification of the effect. Thermo-optically tuned waveguide modulators form an active topic in the field of light detection and ranging (LIDAR), since they can be used to create on chip beam steering platforms. Both one-dimensional (1D) [64, 68, 69] and 2D beam steering based on thermo-optical modulation has been shown.[65, 66, 70, 71, 72, 73, 74] One noteworthy example was the creation of a \(64\) by \(64\) optical phased array with individual phase shifters for each emitter, which theoretically could be used to create a holographic display.

Acousto-Optics#

@@ -374,35 +374,35 @@

Acousto-OpticsFig. 8 a)Schematics of the side and top view of a waveguide based acousto-optic spatial light modulator. b) Schematic of a free space acousto-optic holographic projector. c) Measured holographic projections at various detector integration time employing the device from b). d) Observed holographic projection employing a device structure similar to a). Multicolors were achieved through wavelength superpositioning. Images adapted from [75, 76, 77].#

-

Acousto-optic beam deflectors on LN have been around since the \(1970\)’s.[78] Initially, these devices contained a single modulated channel capable of \(1\)D beam steering.[79, 80] Devices were limited in frequency and thus could only supply acoustic waves capable of creating gratings coupling between guided and cladding or substrate modes. As such, steered light exited the device at the end of the LN wafer. The addition of a second transducer eventually lead to 2D beam steering.[81] In more recent years, a larger degree of control was attained by using the device in a leaky mode state instead.[82] Here, by modulating the device at higher frequencies, guided mode to radiation mode coupling is enabled such that light can be coupled out along its entire surface. This concept has been applied to both beam steering for LIDAR and visible holography.[75, 76, 77, 83] More specifically, a holographic display reaching about \(5\)Hz in refresh rate and a pixel size of \(12\mu m\), calculated from the applied frequency, was achieved. The device excelled in its resolution as it was capable of creating compositional images having up to \(355200\) pixels by \(156\) pixels. Consequently, it is one of the best implementations of holographic display technology yet.

+

Acousto-optic beam deflectors on LN have been around since the \(1970\)’s.[78] Initially, these devices contained a single modulated channel capable of \(1\)D beam steering.[79, 80] Devices were limited in frequency and thus could only supply acoustic waves capable of creating gratings coupling between guided and cladding or substrate modes. As such, steered light exited the device at the end of the LN wafer. The addition of a second transducer eventually lead to 2D beam steering.[81] In more recent years, a larger degree of control was attained by using the device in a leaky mode state instead.[82] Here, by modulating the device at higher frequencies, guided mode to radiation mode coupling is enabled such that light can be coupled out along its entire surface. This concept has been applied to both beam steering for LIDAR and visible holography.[75, 76, 77, 83] More specifically, a holographic display reaching about \(5\)Hz in refresh rate and a pixel size of \(12\mu m\), calculated from the applied frequency, was achieved. The device excelled in its resolution as it was capable of creating compositional images having up to \(355200\) pixels by \(156\) pixels. Consequently, it is one of the best implementations of holographic display technology yet.

Carrier Injection#

-

TCOs have emerged since the beginning of 21st century as a crucial component in solar cells and flat panel displays.[84, 85, 86] They excel, for example, as transparent electrodes or thin film transistors. This is due to their unique optical and electrical properties that combine good conductivity with low absorption. TCO conductivity can vary widely between values typically attributed to dielectrics and semiconductors depending on the amount of present carriers. Stoichiometric TCOs are in general more dielectric. Conversely, larger conductivities comparable to semiconductors, require more free carriers to be present which for most TCOs can be solved by creating oxygen vacancies.[87, 88] Tuning of TCO properties is easily achieved through deposition parameters and post deposition anneals.[89, 90, 91] Next to that, a wide variety of TCOs such as Indium Tin Oxide (ITO), Zinc Oxide (ZnO), Indium Gallium Zinc Oxide (IGZO), … have been investigated. Interestingly, due to their oxide behaviour they tend to have remarkably low absorption accompanying their electrical behaviour. TCOs thus occupy a rather rare position in the semiconductor realm and are now considered as backbone for the next generation of plasmonics and in epsilon near zero and near zero index materials.[92, 93, 94]

-

Their uniqueness however, does not end there. About a decade ago, it was found that the permittivity of TCOs can be actively modulated through the injection or extraction of carriers.[95] By employing indium tin oxide (ITO) as active layer in a a metal-oxide-semiconductor heterostructure, a thin charge accumulation layer could be formed at the interface. Here, the carrier density could be altered between \(10^{18}\)cm\(^{-1}\) and \(10^{23}\)cm\(^{-1}\) resulting in a \(5nm\) layer in which a refractive index change (\(\Delta n\)) of \(1.39\) was recorded at \(800nm\). Optically, this behaviour can be described by a Drude model which links the carrier concentration to the permittivity. The modulation is primarily prevalent in the infrared as free electrons influence optical properties here, but a tail of the effect stretches up to the visible regime. Even though the effect only occurs at the interface, its exceptional size makes it a viable candidate for optical modulators, ideally through the use of ultra-thin layers (\(<10nm\)) to limit optical losses and maximize modulation. Lastly, it should be mentioned that the modulation is fast when compared to other techniques since it is only limited by its \(RC\) time constant.

+

TCOs have emerged since the beginning of 21st century as a crucial component in solar cells and flat panel displays.[84, 85, 86] They excel, for example, as transparent electrodes or thin film transistors. This is due to their unique optical and electrical properties that combine good conductivity with low absorption. TCO conductivity can vary widely between values typically attributed to dielectrics and semiconductors depending on the amount of present carriers. Stoichiometric TCOs are in general more dielectric. Conversely, larger conductivities comparable to semiconductors, require more free carriers to be present which for most TCOs can be solved by creating oxygen vacancies.[87, 88] Tuning of TCO properties is easily achieved through deposition parameters and post deposition anneals.[89, 90, 91] Next to that, a wide variety of TCOs such as Indium Tin Oxide (ITO), Zinc Oxide (ZnO), Indium Gallium Zinc Oxide (IGZO), … have been investigated. Interestingly, due to their oxide behaviour they tend to have remarkably low absorption accompanying their electrical behaviour. TCOs thus occupy a rather rare position in the semiconductor realm and are now considered as backbone for the next generation of plasmonics and in epsilon near zero and near zero index materials.[92, 93, 94]

+

Their uniqueness however, does not end there. About a decade ago, it was found that the permittivity of TCOs can be actively modulated through the injection or extraction of carriers.[95] By employing indium tin oxide (ITO) as active layer in a a metal-oxide-semiconductor heterostructure, a thin charge accumulation layer could be formed at the interface. Here, the carrier density could be altered between \(10^{18}\)cm\(^{-1}\) and \(10^{23}\)cm\(^{-1}\) resulting in a \(5nm\) layer in which a refractive index change (\(\Delta n\)) of \(1.39\) was recorded at \(800nm\). Optically, this behaviour can be described by a Drude model which links the carrier concentration to the permittivity. The modulation is primarily prevalent in the infrared as free electrons influence optical properties here, but a tail of the effect stretches up to the visible regime. Even though the effect only occurs at the interface, its exceptional size makes it a viable candidate for optical modulators, ideally through the use of ultra-thin layers (\(<10nm\)) to limit optical losses and maximize modulation. Lastly, it should be mentioned that the modulation is fast when compared to other techniques since it is only limited by its \(RC\) time constant.

Carrier Injection
-

Fig. 9 a) Variation of refractive index of transparent conductive oxides through carrier accumulation. Measured by ellipsometry in a thin accumulation layer. b) Schematic of a grating structure, covered with ITO. Through accumulation of charges the behaviour of the grating can be tuned. c) Observed reflectivity change from the device in b). The inset shows the percieved change in permittivity. d) Artists impression of a plasmonic metasurface grating, tuned though carrier injection. Incident light is steerd by the applied bias. A single nano-resonator is highlighted, indicating where the accumulation layer resides. e) - f) Reflectivity and phase change under positive and negative bias, observed for the device shown in d). Images adapted from [95, 96, 97].#

+

Fig. 9 a) Variation of refractive index of transparent conductive oxides through carrier accumulation. Measured by ellipsometry in a thin accumulation layer. b) Schematic of a grating structure, covered with ITO. Through accumulation of charges the behaviour of the grating can be tuned. c) Observed reflectivity change from the device in b). The inset shows the percieved change in permittivity. d) Artists impression of a plasmonic metasurface grating, tuned though carrier injection. Incident light is steerd by the applied bias. A single nano-resonator is highlighted, indicating where the accumulation layer resides. e) - f) Reflectivity and phase change under positive and negative bias, observed for the device shown in d). Images adapted from [95, 96, 97].#

-

To date, the effect has been applied in tunable epsilon near zero materials [98, 99], plasmonic modulators [100, 101, 102, 103] and a variety of beam steering applications. This last topic was pioneered by a gate tunable metasurface constructed from a Gold - ITO - Aluminium Oxide back plane on which a Gold grating electrode was patterned to enable MIM plasmonic modulation. Here, the grating serves as reflection antenna which can be modulated by applying electrical bias to both gold electrodes, in doing so changing reflection characteristics.[104] At an incident wavelength of \(1550nm\) and \(2.5V\) bias a normalized reflectance change of \(28.9\%\) and phase shift of \(180^{\circ}C\) was found. Beam steering was enabled by biasing periodically with varying voltage, which allowed switching between \(0\) order and \(-1\) and \(+1\) order reflection. Changing the periodicity of the applied bias tunes the steering angle. Afterwards, both amplitude and phase modulation metasurfaces implementing TCOs were investigated. Amplitude modulation proved especially interesting in tunable absorbers which often utilize a similar MIM structure that acts as a tunable resonant cavity showing a reflectance change of up to \(82\%\) at \(1550nm\).[96, 99, 105, 106] On the other hand, TCO based phase modulators have steadily been improved towards full \(2\pi\) phase modulation.[107] Currently, phase modulation up to \(300^{\cir}\)C has been shown in the infrared.[108] Next to that, phase modulation devices using carrier injection have shown beam steering, LIDAR and beam focusing.[97, 109, 110] +

To date, the effect has been applied in tunable epsilon near zero materials [98, 99], plasmonic modulators [100, 101, 102, 103] and a variety of beam steering applications. This last topic was pioneered by a gate tunable metasurface constructed from a Gold - ITO - Aluminium Oxide back plane on which a Gold grating electrode was patterned to enable MIM plasmonic modulation. Here, the grating serves as reflection antenna which can be modulated by applying electrical bias to both gold electrodes, in doing so changing reflection characteristics.[104] At an incident wavelength of \(1550nm\) and \(2.5V\) bias a normalized reflectance change of \(28.9\%\) and phase shift of \(180^{\circ}C\) was found. Beam steering was enabled by biasing periodically with varying voltage, which allowed switching between \(0\) order and \(-1\) and \(+1\) order reflection. Changing the periodicity of the applied bias tunes the steering angle. Afterwards, both amplitude and phase modulation metasurfaces implementing TCOs were investigated. Amplitude modulation proved especially interesting in tunable absorbers which often utilize a similar MIM structure that acts as a tunable resonant cavity showing a reflectance change of up to \(82\%\) at \(1550nm\).[96, 99, 105, 106] On the other hand, TCO based phase modulators have steadily been improved towards full \(2\pi\) phase modulation.[107] Currently, phase modulation up to \(300^{\circ}\)C has been shown in the infrared.[108] Next to that, phase modulation devices using carrier injection have shown beam steering, LIDAR and beam focusing.[97, 109, 110] To my knowledge, no TCOs based modulators have been implemented into a holographic display even though this could be achieved by a 2D array of individually addressed elements.

Micro-electromechanical Systems#

-

Micro-electromechanical systems (MEMS) are a well established technology that form a bridge between typical silicon based electronic driving and mechanical movement. In doing so, MEMS create a unique set of capabilities that proved relevant in sensors (inertial and pressure), optical scanning and surface probes. Commonly used device actuation schemes are based on electrostatics, thermoelectric, piezoelectrics and electromagnetic effects. Of these, electrostatics and thermoelectrics are most used. Electrostatic based MEMS offer a fast response, lower power consumption and ease of fabrication.[111] Thermoelectric MEMS, on the other hand, provide slower modulation and higher power consumption but are often used in out-of-plane actuation. Manufacturing-wise these MEMS types are compatible with complementary metal oxide semiconductor (CMOS) technologies as they leverage many of the same principles. Both piezoelectric and electromagnetic approaches require more uncommon materials, and thus are not as prominently used.[112, 113]

+

Micro-electromechanical systems (MEMS) are a well established technology that form a bridge between typical silicon based electronic driving and mechanical movement. In doing so, MEMS create a unique set of capabilities that proved relevant in sensors (inertial and pressure), optical scanning and surface probes. Commonly used device actuation schemes are based on electrostatics, thermoelectric, piezoelectrics and electromagnetic effects. Of these, electrostatics and thermoelectrics are most used. Electrostatic based MEMS offer a fast response, lower power consumption and ease of fabrication.[111] Thermoelectric MEMS, on the other hand, provide slower modulation and higher power consumption but are often used in out-of-plane actuation. Manufacturing-wise these MEMS types are compatible with complementary metal oxide semiconductor (CMOS) technologies as they leverage many of the same principles. Both piezoelectric and electromagnetic approaches require more uncommon materials, and thus are not as prominently used.[112, 113]

MEMS

Fig. 10 a) Artists impression of a split ring resonator actuated by electrostatic MEMS. b) SEM image of a single unit cell of the device in a). c) Schematic o a doublet metalens built on a MEMS actuator to provide tunability. d)Microscope and SEM images of the doublet metalens constituents shown in c) e) Simulated and measured holographic projection from a grating metasurface actuated by MEMS. f) SEM image of MEMS actuated gratings used in e). Images adapted from [114, 115, 116].#

-

Due to their unique tuning capabilities MEMS are now also considered as tunable element in metamaterials. Here they can serve two roles, either they add tunability to a metasurface as a whole or they provide tunability to each individual meta-atom. The first scenario has for example, been applied to metalenses which by positioning them on a MEMS actuator can be used for dynamically steering the focusing point.[115, 117, 118, 119] Other approaches have achieved beam steering at visible frequencies by tuning a cavity grating and transmission tuning of up to \(80\%\).[114, 120, 121] +

Due to their unique tuning capabilities MEMS are now also considered as tunable element in metamaterials. Here they can serve two roles, either they add tunability to a metasurface as a whole or they provide tunability to each individual meta-atom. The first scenario has for example, been applied to metalenses which by positioning them on a MEMS actuator can be used for dynamically steering the focusing point.[115, 117, 118, 119] Other approaches have achieved beam steering at visible frequencies by tuning a cavity grating and transmission tuning of up to \(80\%\).[114, 120, 121] These devices are relatively easy to manufacture and might prove useful in sensing in LIDAR applications. They do however not offer complete reprogrammable phase profiles. Indeed, more advanced tunability requires individually addressed pixels, which quickly drives up device complexity. Device arrays up to \(160\) by \(160\) pixels have been reported and have achieved beam steering at THz and infrared frequencies.[116, 122]

Limited efforts have attempted to create a MEMS driven holographic display. That said, MEMS holographic projection was achieved by creating phased arrays and metal insulator metal cavities. Phase differences between individual pixels were created by lateral displacement of reflection gratings (Lohmann) and by cantilever based tuning of a plasmonic resonance respectively.[116, 123, 124] -In general, these attempts have been hindered by the pixel size of MEMS which currently still around the micrometer to tens of micrometer range. As such, the examples mentioned above also operate at infrared wavelengths to retain adequate control. More advanced beam steering, shaping and holography require modulation at a subwavelength scale. Further downscaling of MEMS leads to, so called, nano-electromechanical systems.[125] These devices do attain the desired modulator scale, but again bring about complex design.

+In general, these attempts have been hindered by the pixel size of MEMS which currently still around the micrometer to tens of micrometer range. As such, the examples mentioned above also operate at infrared wavelengths to retain adequate control. More advanced beam steering, shaping and holography require modulation at a subwavelength scale. Further downscaling of MEMS leads to, so called, nano-electromechanical systems.[125] These devices do attain the desired modulator scale, but again bring about complex design.