Skip to content

Latest commit

 

History

History
8 lines (5 loc) · 422 Bytes

README.md

File metadata and controls

8 lines (5 loc) · 422 Bytes

bnn-blog-experiments

For testing whether Bayesian NN priors are generalization-agnostic...or nah.

Requires Python 3 & Tensorflow.

Run: python svhn_good_or_bad.py good to train on just SVHN train set, or python svhn_good_or_bad.py bad to train on the SVHN train set and a corrupted version of the test set.

Run: python svhn_is_posterior_real.py to train a BNN and also a regular neural network on the same data.