-
Notifications
You must be signed in to change notification settings - Fork 0
/
mtcaxa.tex
3403 lines (3110 loc) · 132 KB
/
mtcaxa.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{alggeom}
\pdfoutput=1
% {{{-1 Preamble
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[full]{textcomp}
\usepackage{csquotes}
\usepackage[english]{babel}
% \usepackage[urw-garamond,expert,
% uppercase=upright,greeklowercase=upright]{mathdesign}
% \usepackage[osf,swashQ]{garamondx}
% \def\kappa{\varkappa}
\usepackage{mathtools}
\mathtoolsset{mathic} % Italic correction before mathmode, works with ~'s.
% \def\mathds{\mathbb}
\usepackage{cfr-lm}
\usepackage{dsfont} % disable this when loading mathdesign
\usepackage{microtype}
% \usepackage[biblatex]{embrac}
% \linespread{1.25} % = 1.500 * fontheight
\linespread{1.388} % = 1.666 * fontheight
% \usepackage[
% % paper=b5paper,
% nohead,nomarginpar,
% % bindingoffset=.3cm,
% paper=a4paper,
% ]{geometry}
% \raggedbottom
% \usepackage{lastpage}
% \usepackage{fancyhdr}
% \pagestyle{fancy}
% \fancyhf{}
% \renewcommand{\headrulewidth}{0pt}
% \fancyfoot[LE,RO]{\thepage/\pageref*{LastPage}}
\usepackage{longtable}
\usepackage{booktabs}
\usepackage{tabu}
\usepackage[inline]{enumitem}
\setlist{noitemsep,nosep,listparindent=\parindent}
\setlist[itemize]{label=\guillemotright}
\setlist[enumerate,1]{ref=\thesubsection.\arabic*}
\setlist[enumerate,2]{label=\alph*.,ref=\theenumi.\alph*}
% \setlist[enumerate*]{label=(\textit{\roman*}\thinspace)}
% \usepackage{cjhebrew}
\usepackage[backend=biber,doi=false,url=false,isbn=false,%
safeinputenc,style=quasialphabetic,citestyle=alphabetic]{biblatex}
\bibliography{\jobname.bib}
% \defbibheading{bibliography}[\bibname]{\sectionstar{#1}}
% %%% SECTION HEADINGS
% \usepackage{ifthen}
\makeatletter
% \renewcommand{\part}[1]{%
% \cleardoublepage%
% \vbox{\null\vskip90pt%
% \normalfont\fontsize{20pt}{30pt}\selectfont%
% \baselineskip=30pt%
% \scshape\noindent\textls*{#1}\par}%
% \addcontentsline{toc}{part}{#1}%
% \@afterindentfalse%
% \@afterheading%
% }
% \renewcommand{\section}[1]{%
% \vskip2\baselineskip\penalty-250%
% \refstepcounter{section}%
% \vbox{\normalfont\fontsize{12pt}{15pt}\selectfont%
% \centering\scshape\noindent\textls*{\thesection\quad#1}%
% \par}%
% \addcontentsline{toc}{section}{\protect\numberline{\thesection} #1}%
% \nobreak%
% \@afterindentfalse%
% \@afterheading%
% \nobreak%
% }
% \newcommand{\sectionstar}[1]{%
% \vskip2\baselineskip\penalty-250
% \vbox{\normalfont\fontsize{12pt}{15pt}\selectfont%
% \centering\scshape\noindent\textls*{#1}%
% \par}
% \nobreak\vskip15pt
% \@afterindentfalse%
% \@afterheading%
% }
\usepackage{amsthm}
\usepackage{hyperref}
\usepackage{cleveref}
\numberwithin{equation}{subsection}
\newtheorem{theorem}[subsection]{Theorem}
\newtheorem{proposition}[subsection]{Proposition}
\newtheorem{lemma}[subsection]{Lemma}
\newtheorem{corollary}[subsection]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[subsection]{Definition}
\newtheorem{conjecture}[subsection]{Conjecture}
\theoremstyle{remark}
\newtheorem{remark}[subsection]{Remark}
\newtheorem{notation}[subsection]{Notation}
\newtheorem{example}[subsection]{Example}
\renewcommand{\paragraph}[1]{\par\smallskip\refstepcounter{subsection}%
\global\setbox\@labels\hbox{%
\mbox{\normalfont\normalsize\scshape\noindent\thesubsection%
\ifthenelse{\equal{#1}{}}%
{.}%
{\ \textls{#1.}}%
\ }%---}%
}%
\global\@inlabeltrue
\everypar{%
\if@inlabel
\global\@inlabelfalse
{\setbox\z@ \lastbox}%
\unhbox\@labels
\spacefactor \sfcode `.\relax
\space
\penalty\z@
\fi
}
\ignorespaces
}
\newcommand{\readmetitle}{{\normalfont\normalsize\scshape\noindent%
\textls{Readme.}\ ---}}
\newenvironment{readme}{\par%\vskip\baselineskip%
% \readmetitle
\itshape}{\normalfont}
% \renewcommand\tableofcontents{%
% \sectionstar{\contentsname}%
% \@starttoc{toc}%
% }
% \renewcommand*\l@part[2]{%
% \addvspace{15pt \@plus\p@}%
% \noindent{\leavevmode%
% \scshape\textls{#1\qquad#2}%
% }\par\nobreak%
% }
% \renewcommand*\l@section[2]{%
% \setlength\@tempdima{\parindent}%
% \noindent
% {\leavevmode%
% \hskip\parindent#1\qquad#2%
% }\par\nobreak%
% }
\makeatother
%%% MATH PACKAGES
\usepackage{amsmath,amssymb} % disable when using mathdesign
\usepackage{mathrsfs} % disable when using mathdesign
\usepackage{mathabx}
% \usepackage[thmmarks,amsmath]{ntheorem}
% \usepackage{thmtools}
% \declaretheoremstyle[headformat=swapnumber,headpunct={.\ ---},%
% headfont=\normalfont\scshape\lsstyle,bodyfont=\itshape,%
% spaceabove=0pt,spacebelow=0pt,%
% preheadhook={\bigskip}]{theorem}
% \declaretheorem[style=theorem,sibling=subsection]{theorem}
% \declaretheorem[style=theorem,sibling=subsection]{proposition}
% \declaretheorem[style=theorem,sibling=subsection]{lemma}
% \declaretheorem[style=theorem,sibling=subsection]{corollary}
% \declaretheorem[style=theorem,sibling=subsection]{conjecture}
% \declaretheoremstyle[headformat=swapnumber,headpunct={.\ ---},%
% headfont=\normalfont\scshape\lsstyle,bodyfont=\normalfont,%
% spaceabove=0pt,spacebelow=0pt,%
% preheadhook={\bigskip}]{definition}
% \declaretheorem[style=definition,sibling=subsection]{definition}
% \declaretheorem[style=definition,sibling=subsection]{exercise}
% \declaretheorem[style=definition,sibling=subsection]{example}
% \declaretheorem[style=definition,sibling=subsection]{remark}
% \declaretheorem[style=definition,sibling=subsection]{notation}
% \declaretheorem[style=definition,sibling=subsection]{construction}
% \def\qedsquare{\ \boxvoid}
% \declaretheoremstyle[headpunct={\!.},headfont=\itshape,bodyfont=\normalfont,%
% qed=\ensuremath{\qedsquare},spaceabove=0pt,spacebelow=0pt]{proof}
% \declaretheoremstyle[headpunct={\!.},headfont=\itshape,bodyfont=\normalfont,%
% % qed=\fbox{\phantom{\rule{.3ex}{.3ex}}},spaceabove=0pt,spacebelow=0pt]{nonumberproof}
% qed=\ensuremath{\qedsquare},spaceabove=0pt,spacebelow=0pt]{nonumberproof}
% \declaretheorem[style=proof,numbered=no]{proof}
% \declaretheoremstyle[headformat=swapnumber,headpunct={.\ ---},%
% headfont=\itshape,bodyfont=\normalfont,qed=\ensuremath{\qedsquare},%
% spaceabove=0pt,spacebelow=0pt,%
% preheadhook={\bigskip}]{nproof}
% \declaretheorem[style=nproof,sibling=subsection,name=Proof]{nproof}
\crefname{condition}{condition}{conditions}
\crefname{conjecture}{conjecture}{conjectures}
\crefname{construction}{construction}{constructions}
\crefname{corollary}{corollary}{corollaries}
\crefname{diagram}{diagram}{diagrams}
\crefformat{subsection}{\S#2#1#3}
\crefformat{enumi}{\S#2#1#3}
\crefformat{nproof}{\S#2#1#3}
\creflabelformat{equation}{#2#1#3}
%%% MATH MACROS
\newcommand{\id}{\textnormal{id}}
\newcommand{\ev}{\textnormal{ev}}
\newcommand{\into}{\hookrightarrow}
\newcommand{\onto}{\twoheadrightarrow}
\newcommand{\longto}{\longrightarrow}
\newcommand{\longinto}{\lhook\joinrel\longrightarrow}
\renewcommand{\Im}{\textnormal{Im}}
\newcommand{\colim}{\mathop{\textnormal{colim}}}
\newcommand{\Hom}{\textnormal{Hom}}
\newcommand{\End}{\textnormal{End}}
\newcommand{\Isom}{\textnormal{Isom}}
\newcommand{\Inn}{\textnormal{Inn}}
\newcommand{\Aut}{\textnormal{Aut}}
\newcommand{\Out}{\textnormal{Out}}
\newcommand{\iHom}{\underline{\Hom}}
\newcommand{\iEnd}{\underline{\End}}
\newcommand{\iIsom}{\underline{\Isom}}
\newcommand{\iInn}{\underline{\Inn}}
\newcommand{\iAut}{\underline{\Aut}}
\newcommand{\iOut}{\underline{\Out}}
\newcommand{\Mat}{\textnormal{Mat}}
\newcommand{\Sym}{\textnormal{Sym}}
\newcommand{\Fil}{\textnormal{Fil}}
\newcommand{\dual}[1]{\check{#1}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\QQbar}{\bar{\QQ}}
\newcommand{\QQl}{\QQ_{\ell}}
\newcommand{\QQlbar}{\QQbar_{\ell}}
\newcommand{\QQp}{\QQ_{p}}
\newcommand{\QQpbar}{\QQbar_{p}}
\newcommand{\BB}{\mathrm{B}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\HQ}{\mathbb{H}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\FFp}{\FF_{p}}
\newcommand{\FFq}{\FF_{q}}
\newcommand{\FFqbar}{\bar{\FF}_{q}}
\newcommand{\Adele}{\mathbb{A}}
\newcommand{\fin}{\textnormal{f}}
\newcommand{\primes}{\mathscr{L}}
\newcommand{\Spec}{\textnormal{Spec}}
\newcommand{\DelS}{\mathbb{S}}
\newcommand{\Sh}{\textnormal{Sh}}
\newcommand{\mSh}{\mathscr{S}}
\newcommand{\DD}{\mathbb{D}}
\newcommand{\mcG}{\mathcal{G}}
\newcommand{\Kmpt}{\mathcal{K}}
\newcommand{\Sds}{\mathfrak{H}^{\pm}}
\newcommand{\AV}{\mathscr{A}}
\newcommand{\Ag}{\AV_{g}}
\newcommand{\Gal}{\textnormal{Gal}}
% \newcommand{\HH}{\textnormal{H}}
% \newcommand{\Hhom}{\HH_{\textnormal{hom}}}
\newcommand{\HdR}{\HH_{\dR}}
% \newcommand{\Hl}{\HH_{\ell}}
% \newcommand{\Hp}{\HH_{p}}
% \newcommand{\Hlambda}{\HH_{\lambda}}
% \newcommand{\HB}{\HH_{\textnormal{B}}}
% \newcommand{\Hsigma}{\HH_{\sigma}}
% \newcommand{\GG}{\textnormal{G}}
% \newcommand{\Gl}{\GG_{\ell}}
% \newcommand{\Glc}{\Gl^{\circ}}
% \newcommand{\GB}{\GG_{\textnormal{B}}}
% \newcommand{\Gsigma}{\GG_{\sigma}}
% \newcommand{\Gmot}[1]{\GG_{\textnormal{mot},#1}}
% \newcommand{\Gmots}{\Gmot{\sigma}}
% \newcommand{\Gmotl}{\Gmot{\ell}}
% \newcommand{\GmotB}{\Gmot{\textnormal{B}}}
% \newcommand{\Zl}{\textnormal{Z}_{\ell}}
% \newcommand{\Zlc}{\Zl^{\circ}}
% \newcommand{\ZB}{\textnormal{Z}_{\textnormal{B}}}
% \newcommand{\Zsigma}{\textnormal{Z}_{\sigma}}
% \newcommand{\Zmot}[1]{\textnormal{Z}_{\textnormal{mot},#1}}
% \newcommand{\Zmots}{\Zmot{\sigma}}
% \newcommand{\Zmotl}{\Zmot{\ell}}
\newcommand{\BdR}[1]{\textnormal{B}_{\dR,#1}}
\newcommand{\HT}{\textnormal{HT}}
\newcommand{\BHT}[1]{\textnormal{B}_{\HT,#1}}
\newcommand{\FHT}[1]{\textnormal{F}_{\HT,#1}}
\newcommand{\gr}{\textnormal{gr}}
\newcommand{\GdR}{\GG_{\dR}}
\newcommand{\Vect}{\textnormal{Vect}}
\newcommand{\grVect}{\textnormal{grVect}}
\newcommand{\Filt}{\textnormal{Filt}}
\newcommand{\Rep}{\textnormal{Rep}}
\newcommand{\QHS}{\QQ\textnormal{HS}}
\newcommand{\FpHS}{\textnormal{FpHS}}
\makeatletter
\def\cpwith[#1]#2{\textnormal{c.p.}_{#1}(#2)}
\def\cpwithout#1{\textnormal{c.p.}(#1)}
\def\cp{\@ifnextchar[{\cpwith}{\cpwithout}}
\makeatother
\makeatletter
\def\Gmwith[#1]{\mathbb{G}_{\textnormal{m},#1}}
\def\Gmwithout{\mathbb{G}_{\textnormal{m}}}
\def\Gm{\@ifnextchar[{\Gmwith}{\Gmwithout}}
\makeatother
\newcommand{\GL}{\textnormal{GL}}
\newcommand{\SL}{\textnormal{SL}}
\newcommand{\PGL}{\textnormal{PGL}}
\newcommand{\UU}{\textnormal{U}}
\newcommand{\SU}{\textnormal{SU}}
\newcommand{\GU}{\textnormal{GU}}
\newcommand{\PGU}{\textnormal{PGU}}
\newcommand{\OO}{\textnormal{O}}
\newcommand{\SO}{\textnormal{SO}}
\newcommand{\GO}{\textnormal{GO}}
\newcommand{\PGO}{\textnormal{PGO}}
\newcommand{\Spin}{\textnormal{Spin}}
\newcommand{\CSpin}{\textnormal{CSpin}}
\newcommand{\PSpin}{\textnormal{PSpin}}
\newcommand{\Sp}{\textnormal{Sp}}
\newcommand{\CSp}{\textnormal{CSp}}
\newcommand{\PCSp}{\textnormal{PCSp}}
\newcommand{\Lie}{\textnormal{Lie}}
\newcommand{\Char}{\textnormal{X}^{*}}
\newcommand{\Cochar}{\textnormal{X}_{*}}
\newcommand{\Fund}{\textnormal{Fund}}
\newcommand{\Dyn}{\textnormal{Dyn}}
% \newcommand{\mfsl}{\mathfrak{sl}}
% \newcommand{\mfso}{\mathfrak{so}}
\newcommand{\Cliff}{\textnormal{Cl}}
% \newcommand{\spin}{\textnormal{spin}}
% \newcommand{\St}{\textnormal{St}}
\newcommand{\ab}{\textnormal{ab}}
\newcommand{\der}{\textnormal{der}}
\newcommand{\ad}{\textnormal{ad}}
\newcommand{\ha}{\textnormal{ha}}
\newcommand{\SmPr}{\textnormal{SmPr}}
\newcommand{\Fib}{\textnormal{Fib}}
\newcommand{\Mod}{\textnormal{Mod}}
\newcommand{\Proj}{\textnormal{Proj}}
\newcommand{\an}{\textnormal{an}}
\newcommand{\cl}{\textnormal{cl}}
\newcommand{\dR}{\textnormal{dR}}
\newcommand{\et}{\textnormal{\'{e}t}}
\newcommand{\sing}{\textnormal{sing}}
\newcommand{\HH}{\textnormal{H}}
\newcommand{\Hl}{\HH_{\ell}}
\newcommand{\Hp}{\HH_{p}}
\newcommand{\Hlambda}{\HH_{\lambda}}
\newcommand{\HB}{\HH_{\textnormal{B}}}
\newcommand{\HLambda}{\HH_{\Lambda}}
\newcommand{\Zar}{\textnormal{Zar}}
\newcommand{\Mot}{\textnormal{Mot}}
\newcommand{\Zentrum}{\textnormal{Z}}
\newcommand{\GG}{\textnormal{G}}
\newcommand{\GB}{\GG_{\textnormal{B}}}
\newcommand{\Gp}{\GG_{p}}
\newcommand{\Gpc}{\Gp^{\circ}}
\newcommand{\Gl}{\GG_{\ell}}
\newcommand{\Glc}{\Gl^{\circ}}
\newcommand{\Glambda}{\GG_{\lambda}}
\newcommand{\Glambdac}{\Glambda^{\circ}}
\newcommand{\HS}{\textnormal{HS}}
\newcommand{\alg}{\textnormal{alg}}
\newcommand{\tra}{\textnormal{tra}}
\newcommand{\Res}{\textnormal{Res}}
\newcommand{\Nm}{\textnormal{Nm}}
\newcommand{\trace}{\textnormal{tr}}
\newcommand{\rk}{\textnormal{rk}}
\renewcommand{\det}{\textnormal{det}}
\newcommand{\res}{\textnormal{res}}
\newcommand{\chrc}{\textnormal{char}}
\newcommand{\Tangen}[1]{\langle #1 \rangle^{\otimes}}
\newcommand{\Val}{\textnormal{Val}}
\newcommand{\tr}{\textsc{tr}}
\newcommand{\cm}{\textsc{cm}}
\newcommand{\MTC}{\textnormal{MTC}}
\newcommand{\rotatesim}{\rotatebox{90}{$\sim$}}
\newcommand{\Sigmacmpt}{\Sigma_{\textnormal{c}}}
\newcommand{\Sigmanc}{\Sigma_{\textnormal{nc}}}
% Dynkin types
\newcommand{\DtA}{\textnormal{A}}
\newcommand{\DtB}{\textnormal{B}}
\newcommand{\DtC}{\textnormal{C}}
\newcommand{\DtD}{\textnormal{D}}
\newcommand{\DtE}{\textnormal{E}}
\newcommand{\DtF}{\textnormal{F}}
\newcommand{\DtG}{\textnormal{G}}
\usepackage{tikz}
\usetikzlibrary{calc,
arrows.meta,
cd,
decorations.markings,
decorations.pathmorphing,
positioning,
positioning,
shadows,
shapes,
shapes.geometric
}
\tikzset{Dynkin/.style = {
every node/.style = {circle, draw, semithick, inner sep=2pt, fill=white,
copy shadow={fill=black, shadow xshift=0.3pt, shadow yshift=-0.1pt},
},
every label/.append style = {label distance=-2.5pt,
rectangle,draw=none,font=\footnotesize,
inner sep=1ex,text depth=1pt,
every shadow/.style={opacity=0}
},
special/.style={rectangle, inner sep=2.4pt},
symplectic/.style={correct forbidden sign},
a0/.style = {fill=gray!50},
diagramlabel/.style = {draw=none,opacity=0},
doubledynkin/.style={double distance=2pt,
decoration={markings,
mark=at position 0.6 with {\arrow[semithick]{Straight Barb[length=5pt]}},
},
postaction={decorate},
}
}% end of Dynkin style
}% end of tikzset
%%%%%%%%%%%%%%%%%% GET UPRIGHT BRACES
\def\adef#1{\catcode`#1=13 \bgroup \lccode`\~=`#1\lowercase{\egroup\def~}}
\long\def\addto#1#2{\expandafter\def\expandafter#1\expandafter{#1#2}}
\def\activebraces#1#2{\adef#1{\ifmmode#1\else{\textup#1}\fi}\adef#2{\ifmmode#2\else{\/\textup#2}\fi}}
\let\emphOri=\emph
\def\emph{\bgroup\activebraces()\activebraces[]\emphA}
\def\emphA#1{\emphOri{#1}\egroup}
\addto\itshape{\activebraces()}%\activebraces[]}
\renewcommand{\mkbibbrackets}[1]{\textup{[}#1\textup{]}}
%%%%%%%%%%%%%%%%%%%%%%%%5
\def\tops{\texorpdfstring}
\usepackage{datetime}
\def\date{\dayofweekname{\day}{\month}{\year},
the \ordinaldate{\day} of \monthname, \number\year}
% -}}}1
\raggedbottom
\begin{document}
% {{{-1 Title
\title[MTC for products of abelian varieties]
{The Mumford--Tate conjecture for products of abelian varieties}
\author{Johan Commelin}
\email{jmc@math.uni-freiburg.de}
\address{Albert--Ludwigs-Universit\"at Freiburg\\Mathematisches Institut\\Ernst-Zermelo-Stra\ss{}e 1\\79104 Freiburg im Breisgau\\Deutschland}
\classification{\textsc{14f20, 14k15}}
\keywords{Mumford--Tate conjecture, motives, abelian varieties}
\thanks{This research has been financially supported by the
Netherlands Organisation for Scientific Research~(NWO)
under project no.~613.001.207
\emph{(Arithmetic and motivic aspects of the Kuga--Satake construction)}
and no.~613.001.651
\emph{(The Cohomology of the Moduli Space of Curves)} and by the
Deutsche Forschungs Gemeinschaft~(DFG)
under Graduiertenkolleg~1821
\emph{(Cohomological Methods in Geometry)}.}
\begin{abstract} % {{{-2
Let $X$ be a smooth projective variety
over a finitely generated field $K$ of characteristic~$0$
and fix an embedding $K \subset \CC$.
The Mumford--Tate conjecture is a precise way of saying that
certain extra structure on the $\ell$-adic \'etale cohomology groups of~$X$
(namely, a Galois representation)
and
certain extra structure on the singular cohomology groups of~$X$
(namely, a Hodge structure)
convey the same information.
The main result of this paper says that if $A_1$ and~$A_2$ are
abelian varieties (or abelian motives) over~$K$,
and the Mumford--Tate conjecture holds for
both~$A_1$ and~$A_2$, then it holds for $A_1 \times A_2$.
These results do not depend on the embedding $K \subset \CC$.
\end{abstract}
% -}}}2
\maketitle
% -}}}1
\section{Introduction} % {{{-1
\paragraph{} % {{{-2
Let $A$~be an abelian variety over a finitely generated field $K \subset \CC$.
Denote with $\bar K$ the algebraic closure of $K$ in~$\CC$.
If $\ell$ is a prime number,
we write $\Hl^1(A)$ for the $\ell$-adic cohomology group
$\HH_{\et}^1(A_{\bar K}, \QQl)$.
Similarly, we write $\HB^1(A)$
for the singular cohomology group $\HH_{\sing}^1(A(\CC), \QQ)$.
There is a natural isomorphism $\Hl^1(A) \cong \HB^1(A) \otimes \QQl$
of vector spaces.
The vector space $\Hl^1(A)$ carries a Galois representation
$\rho_\ell \colon \Gal(\bar K/K) \to \GL(\Hl^1(A))$,
while $\HB^1(A)$ carries a Hodge structure.
This Hodge strucutre may be described
by a representation $\rho \colon \GB(A) \to \GL(\HB^1(A))$,
where $\GB(A)$ is the \emph{Mumford--Tate group} of~$A$
(see \cref{HS}).
Write $\Gl(A)$ for the Zariski closure of the image of~$\rho_\ell$,
and $\Glc(A)$ for the identity component of~$\Gl(A)$.
The \emph{Mumford--Tate conjecture} expresses the expectation that
the comparison isomorphism $\Hl^1(A) \cong \HB^1(A) \otimes \QQl$
identifies $\Glc(A)$ with~$\GB(A) \otimes \QQl$.
This conjecture is still wide open.
\paragraph{Main theorem} % {{{-2
The goal of this article is \cref{mtcaxa}:
\smallskip
{\narrower\it\noindent
Let $A_1$ and~$A_2$ be two abelian varieties
over a finitely generated field $K \subset \CC$.
If the Mumford--Tate conjecture is true for $A_1$ and~$A_2$,
then it is true for $A_1 \times A_2$.
\par}
\medskip
\noindent
In fact, in \cref{mtc-abelian-motives-tannakian-subcategory}
we prove the more general statement that
the full subcategory of abelian motives over~$K$
consisting of motives for which the
Mumford--Tate conjecture holds
is a subcategory that is closed under
direct sums, tensor products, duals, and taking direct summands.
\begin{remark} % {{{-2
\begin{enumerate}
\item Observe that the conclusion of the theorem
is not a formal consequence of the assumption:
Suppose that $G'$ is a group, with two representations
$\rho_1 \colon G' \to \GL(V_1)$
and
$\rho_2 \colon G' \to \GL(V_2)$.
Let $G_1$ (resp.~$G_2$) be the image of~$\rho_1$ (resp.~$\rho_2$).
Write $\rho$ for $\rho_1 \oplus \rho_2$,
and let $G$ be the image of~$\rho$.
Then $G$ is a subgroup of $G_1 \times G_2$,
and the projection of~$G$ onto $G_1$ (and~$G_2$)
is surjective.
However, $G \subset G_1 \times G_2$
may be anything, ranging from the diagonal
(\emph{e.g.}, if $V_1 \cong V_2$)
to the full product
(\emph{e.g.}, if $G_1 \not\cong G_2$ and both groups are simple).
In the context of the main theorem we have
\[
\Glc(A_1 \times A_2) \subset \Glc(A_1) \times \Glc(A_2)
\cong (\GB(A_1) \times \GB(A_2)) \otimes \QQl
\supset \GB(A_1 \times A_2) \otimes \QQl,
\]
and there is no \emph{a priori} formal reason why
$\Glc(A_1 \times A_2)$ and $\GB(A_1 \times A_2) \otimes \QQl$
should be the same subgroup.
\item \label[remark]{Goursat}
The situation above is exactly the setup where Goursat's lemma applies:
we have two groups~$G_1$ and~$G_2$
and a subgroup $G' \subset G_1 \times G_2$
such that the projections $\pi_i \colon G \to G_i$
are surjective ($i = 1,2$).
Let $N_1$ be the kernel of~$\pi_2$,
and $N_2$ the kernel of $\pi_1$.
Goursat's lemma is the observation that
one may identify $N_i$ with a normal subgroup of~$G_i$,
and the image of~$G'$ in $G_1/N_1 \times G_2/N_2$
is the graph of an isomorphism $G_1/N_1 \to G_2/N_2$.
This lemma is also true in the context of algebraic groups;
a fact that we will need later on.
We leave the proofs of these statements as an exercixe to the reader.
\end{enumerate}
\end{remark}
\begin{remark} % {{{-2
This paper extends work of Lombardo~\cite{Lo14} and Vasiu~\cite{Va08}.
The latter contains a result similar to \cref{mtcaxa}
although it has to exclude the case where $A_1$ or~$A_2$
has a Mumford--Tate group with a simple factor of type~$\DtD_4^\HQ$.
Its proof is long and very technical,
and I do not claim to grasp the details.
His global strategy is similar to the one employed below;
and the reason that we can now prove the stronger claim
is mostly due to the results of~\cite{Co17} (building on~\cite{Kisin_modp}).
\looseness=-1
\end{remark}
\paragraph{Strategy of the proof} % {{{-2
\label{strategy}
\begin{enumerate}
\item As a first step, we linearise the category of abelian varieties
into so called \emph{abelian motives} (in the sense of Andr\'e~\cite{An95},
or motives for absolute Hodge cycles).
We obtain a semisimple Tannakian category,
allowing us to apply the toolkit
of representation theory of reductive linear groups.
\item From work of several people (notably Piatetski-Shapiro,
Deligne, Andr\'e, and Faltings) we know that for any abelian motive~$M$
the group $\Glc(M)$ is reductive,
and we have an inclusion $\Glc(M) \subset \GB(M) \otimes \QQl$.
\item We then prove that the connected component of the centre of~$\Glc(A)$ is
isomorphic to the connected component of the centre of~$\GB(A) \otimes \QQl$.
For this we employ \emph{\cm~motives}, and
reduce the claim to the Mumford--Tate conjecture for \cm~abelian varieties,
which is known by work of Pohlmann~\cite{Pohl68}.
(This result is proven in theorem~1.3.1 of~\cite{Va08}
and corollary~2.11 of~\cite{UY13} using different methods.)
\item The next step consists of replacing the abelian variety~$A_i$ ($i = 1,2$)
by the motive~$M_i$ that corresponds---via the Tannakian formalism---with
the adjoint representation of $\GB(A_i)^\ad$.
It suffices to prove the Mumford--Tate conjecture for $M_1 \oplus M_2$.
\item By general considerations,
we may assume that $M_1$ and~$M_2$ are irreducible motives.
In particular, the Mumford--Tate groups~$\GB(M_1)$ and~$\GB(M_2)$
are $\QQ$-simple adjoint groups.
In addition, we assume that
$\Glc(M_1 \oplus M_2) \subsetneq \Glc(M_1) \times \Glc(M_2)$.
\item We use Goursat's lemma (see \cref{Goursat}) and
results from~\cite{Co17} to show that
for all prime numbers~$\ell$ we have $\Hl(M_1) \cong \Hl(M_2)$.
From this we deduce that there is a canonical isomorphism
$\End(M_1) \cong \End(M_2)$.
\item The remainder of the proof consists of applying
a construction of Deligne to~$M_1$ and~$M_2$
that is reminiscent of the Kuga--Satake construction for K3~surfaces.
As a result we acquire two abelian varieties~$\tilde A_1$ and~$\tilde A_2$,
and our job is to show that the isomorphism $\Hl(M_1) \cong \Hl(M_2)$
lifts to an isomorphism $\Hl^1(\tilde A_1) \cong \Hl^1(\tilde A_2)$.
\item Once that is done,
we apply Faltings's theorem, to deduce that $\tilde A_1$ and~$\tilde A_2$
are isogenous abelian varieties.
This in turn implies $\GB(\tilde A_1) \cong \GB(\tilde A_2)$.
In particular $\GB(M_1 \oplus M_2) \subset \GB(M_1) \times \GB(M_2)$
is the diagonal,
hence $\Glc(M_1 \oplus M_2) \cong \GB(M_1 \oplus M_2) \otimes \QQl$,
and we win!
\end{enumerate}
\begin{notation} % {{{-2
For any field~$K$,
we denote with~$\Gamma_K$ the absolute Galois group~$\Gal(\bar K/K)$.
\end{notation}
\begin{acknowledgements} % {{{-2
My warmest thanks go to my supervisor Ben Moonen.
Our countless discussions and his many detailed explanations and corrections
have been of immense importance for this article.
I also thank Rutger Noot for a very inspiring discussion of this subject.
This article also benefited from the extensive feedback on my PhD~thesis
that I received from Anna Cadoret, Pierre Deligne, Bas Edixhoven,
Milan Lopuha\"a, Rutger Noot, and Lenny Taelman.
I thank Netan Dogra, Brad Drew, Carel Faber, Salvatore Floccari,
Martin Gallauer, Joost Nuiten, and Frans Oort
for their interest and useful comments.
I express my gratitude to an anonymous referee
for detailed comments and feedback,
and for catching an error in an earlier version
of~\cref{table-deligne-dynkin-diagrams}.
\end{acknowledgements}
\section{Hyperadjoint objects in Tannakian categories} % {{{-1
\begin{readme} % {{{-2
In representation theory the adjoint representation is very important.
Via the Tannakian formalism
we port adjoint representations to Tannakian categories.
(For a good overview of the Tannakian formalism, see~\cite{Breen_TanCats}.
For details we refer to~\cite{Deligne_CatTan} and~\cite{DMOS}.)
This leads to the definition of hyperadjoint objects in Tannakian categories.
We study some of their properties in \cref{ha-props}.
This section ties into the proof of the main theorem
because we will replace abelian varieties~$A$ by the motive
that corresponds to the adjoint representation of the
motivic Galois group of~$A$.
(See also the strategy in \cref{strategy}.)
\end{readme}
\paragraph{} % {{{-2
Let $Q$ be a field of characteristic~$0$, and
let $T$ be a $Q$-linear symmetric monoidal category.
Let $R$ be a $Q$-algebra, and
denote with $\Proj_R$ the category of
finitely generated projective $R$-modules.
An \emph{$R$-valued fibre functor} of~$T$
is a $Q$-linear monoidal functor $T \to \Proj_R$
that is faithful and exact.
We denote
the groupoid of fibre functors $T \to \Proj_R$
with $\Fib(T)_R$.
\paragraph{} % {{{-2
Let $Q$ be a field of characteristic~$0$.
A Tannakian category over~$Q$
is a $Q$-linear rigid abelian symmetric monoidal category
with an isomorphism $Q \stackrel\sim\to \End(1)$ such that
for every object $V \in T$ the following equivalent conditions hold:
\begin{enumerate*}[label=(\textit{\roman*})]
\item there exists an integer~$n$ such that $\bigwedge^n V = 0$; or
\item $\dim(V)$ is an integer.
\end{enumerate*}
(See \S1.2 and th\'eor\`eme~7.1 of~\cite{Deligne_CatTan}.)
The exterior power $\bigwedge^n V$ is defined in the usual way
in terms of $\bigotimes^n V$ and antisymmetrisation.
The dimension of~$V$ is defined as the trace of the identity morphism on~$V$,
in other words, $\dim(V)$ is the composition of the natural morphisms
$\delta$ (unit) and $\ev$ (counit):
$1 \stackrel\delta\longto V^\star \otimes V \stackrel\ev\longto 1$.
Th\'eor\`eme~7.1 of~\cite{Deligne_CatTan}
shows that the two conditions listed above are equivalent to the existence of
a $Q$-algebra~$R$ and a fibre functor $T \to \Proj_R$.
\paragraph{} % {{{-2
Throughout the rest of this section,
$T$ will denote a Tannakian category over a field~$Q$ of characteristic~$0$.
For a $Q$-algebra~$R$, recall that $\Fib(T)_R$ is the groupoid of
fibre functors $T \to \Proj_R$.
It turns out that $\Fib(T)$ is an algebraic stack over~$Q$.
In fact, if $\alpha \colon Q \to R$ is a $Q$-algebra,
and $\omega \colon T \to \Proj_R$ is a fibre functor,
then the stack $\alpha^*\Fib(T)$ is isomorphic to $\BB G = [\Spec(R)/G]$,
where $G$ is the affine group scheme $\iAut^\otimes(\omega)$ over~$R$.
This observation
(together with the fact that such fibre functors exist)
makes $\Fib(T)$ into a gerbe.
A representation of~$\Fib(T)$ is a cartesian functor $\Fib(T) \to \Proj$,
in other words, a collection of functors $\Fib(T)_R \to \Proj_R$
that is functorial in~$R$.
The category of representations of~$\Fib(T)$ is denoted $\Rep(\Fib(T))$,
and the evaluation functor $T \to \Rep(\Fib(T))$,
given by $V \mapsto (\omega \mapsto \omega(V))$ is an equivalence.
This is one half of the statement of Tannaka duality.
The other half is the converse statement:
if $G$ is an affine gerbe over~$Q$,
then $G$ is naturally isomorphic to $\Fib(\Rep(G))$.
\begin{definition} % {{{-2
Assume that $T$ is finitely generated (hence generated by one object).
The \emph{adjoint object} in~$T$ is the object
(well-defined up to isomorphism)
that corresponds with the collection of functors
$\Fib(T)_R \to \Proj_R$ given by $\omega \mapsto \Lie(\iAut^\otimes(\omega))$
via the Tannakian formalism described above.
N.b.: Since $T$ is finitely generated,
the group scheme $\iAut^\otimes(\omega)$ is of finite type,
and therefore $\Lie(\iAut^\otimes(\omega))$ is finitely generated.
\end{definition}
\begin{notation} % {{{-2
If $V$ is an object of~$T$,
then $V^\ad$ denotes the adjoint object
of the Tannakian subcategory $\Tangen{V} \subset T$ generated by~$V$.
\end{notation}
\paragraph{} % {{{-2
If $V$ is an object in~$T$,
inductively define a sequence of objects by $V^{(0)} = V$,
and $V^{(i+1)} = (V^{(i)})^\ad$ for $i \in \ZZ_{\ge0}$.
Observe that for $i \ge 1$ the object~$V^{(i+1)}$ is a quotient of~$V^{(i)}$,
and therefore $\dim V^{(i+1)} \le \dim V^{(i)}$.
Since $V$ is finite-dimensional
this sequence stabilises at an object $V^{(\infty)}$.
\begin{definition} % {{{-2
\label{ha-obj}
Retain the notation of the preceding paragraph.
We call the object $V^{(\infty)}$ the \emph{hyperadjoint object}
associated with~$V$, and we denote it with~$V^\ha$.
We say that an object $V \in T$ is \emph{hyperadjoint} if $V \cong V^\ha$
(or equivalently, if $V \cong V^\ad$).
\end{definition}
\begin{remark} % {{{-2
The constructions $V \rightsquigarrow V^\ad$ and $V \rightsquigarrow V^\ha$
are not functorial.
They do not in general commute with
tensor functors between Tannakian categories.
Also, the constructions are not in general compatible with direct sums.
Note that the definitions are such that
if $V \ne 0$ is a hyperadjoint object in~$T$
then $V \oplus V$ is not hyperadjoint.
Caveat emptor!
On a more positive note, the following remark explains that in this paper
these constructions are very manageable.
\Cref{ha-props} also lists some natural properties of these constructions.
\end{remark}
\begin{remark} % {{{-2
In this paper we always have $V^\ha = V^{(2)}$
for all objects that are of interest to us.
The reason for this is that all the objects we encounter live in
Tannakian (sub)categories that are semisimple,
and therefore the associated groups (or gerbes) are reductive.
Now suppose that $G$ is a reductive group,
with a faithful representation $V \in \Rep(G)$.
After the first step, we have the object $V^{(1)} = V^\ad = \Lie(G)$.
Since $G$ is reductive, we have a short exact sequence
$0 \to \Zentrum(G) \to G \to G^\ad \to 0$,
and $\Lie(G) = \Lie(\Zentrum(G)) \oplus \Lie(G^\ad)$.
Observe that $\Lie(\Zentrum(G))$ is isomorphic
to a number of copies of the trivial representation of~$G$,
and therefore $G^\ad$ is the group associated with~$V^{(1)}$.
We conclude that $V^{(2)} = \Lie(G^\ad)$,
which is a faithful representation of~$G^\ad$,
and therefore $V^\ha = V^{(2)}$.
\end{remark}
\begin{remark} % {{{-2
I do not know of an intrinsic way to define
adjoint and hyperadjoint objects in a finitely generated Tannakian category.
Given the universal nature of the adjoint representation,
I expect that it is possible to give a definition
without using the Tannakian formalism to pass to algebraic groups or gerbes.
Such a definition might also lead to intrinsic proofs of several properties,
such as those in the following \namecref{ha-props}.
\end{remark}
\begin{lemma} % {{{-2
\label{ha-props}
Let $V$ be an object of~$T$, and $W$ an object of~$\Tangen{V}$.
\begin{enumerate}
\item We have $W^\ad \in \Tangen{V^\ad}$, and $W^\ha \in \Tangen{V^\ha}$.
\item If $V$ is a direct sum of hyperadjoint objects,
then $\Tangen{V}$ is semisimple.
\item If $V$ is a direct sum of hyperadjoint objects,
and in addition $W$ is hyperadjoint,
then $W$ is a direct summand of~$V$.
\end{enumerate}
Suppose that $V = V_1 \oplus V_2$, with $V_1,V_2 \in T$.
\begin{enumerate}[resume]
\item Then $V^\ad$ is a subobject of $V_1^\ad \oplus V_2^\ad$,
and in particular an object of $\Tangen{V_1^\ad \oplus V_2^\ad}$.
\item For all $i \in \ZZ_{\ge0}$,
we have $V^{(i+1)} \in \Tangen{(V_1^{(i)} \oplus V_2^{(i)})^\ad}
\subset \Tangen{V_1^{(i+1)} \oplus V_2^{(i+1)}}$.
\item The object $V^\ha$ is a direct summand of $V_1^\ha \oplus V_2^\ha$.
\label[lemma]{ha-summands}
\end{enumerate}
\begin{proof}
We explain the proof under the assumption
that there is a fibre functor $\omega \in \Fib(T)_Q$.
Let $G$ be the group $\iAut^\otimes(\omega|_{\Tangen{V}})$
and denote with $H$ the group $\iAut^\otimes(\omega|_{\Tangen{W}})$.
By assumption there is a surjective map $G \onto H$.
\begin{enumerate}
\item Since $G$ and~$H$ are groups over the field~$Q$ of characteristic~$0$,
the map $G \onto H$ induces a surjection $\Lie(G) \onto \Lie(H)$.
This proves the first claim; the second follows by induction.
\item If $V$ is hyperadjoint, then $G$ is semisimple and thus reductive.
The general case---where $V$ is a direct sum of hyperadjoint objects---%
follows from Goursat's lemma in the context of algebraic groups
(see \cref{Goursat}).
\item Both $G$ and $H$ are adjoint semisimple, and $H$ is a quotient of~$G$.
Thus $H$ is a factor of~$G$.
\end{enumerate}
Let $G_i$ be the group $\iAut^\otimes(\omega|_{\Tangen{V_1}})$.
There is a natural map $G \into G_1 \times G_2$,
and its composition with the projection onto~$G_1$ or~$G_2$ is surjective.
\begin{enumerate}[resume]
\item There is a natural map $\Lie(G) \into \Lie(G_1) \oplus \Lie(G_2)$.
\item Inductively apply point~1 and the preceding point.
\item Apply the preceding point and point~3. \qedhere
\end{enumerate}
\end{proof}
\end{lemma}
\section{Fractional Hodge structures} \label{HS} % {{{-1
\begin{readme} % {{{-2
Following \cite{Del_ShimVar} we use the notion of fractional Hodge structures.
We also define the slightly more general notion of a
fractional pre-Hodge structure.
This section does not contain anything original,
but only introduces these concepts because they will prove useful
in understanding Deligne's construction (\cref{delignes-construction}).
\end{readme}
\begin{definition} % {{{-2
Let $R \subset \RR$ be a subring (typically $\ZZ$,~$\QQ$, or~$\RR$).
A \emph{fractional pre-Hodge structure} over~$R$
consists of a free $R$-module~$V$ of finite rank,
and a decomposition
$
V \otimes \CC \cong \bigoplus_{p,q \in \QQ} V^{p,q}
$
over~$\CC$, such that $V^{p,q} = \overline{V^{q,p}}$.
We denote the category of fractional pre-Hodge structures over~$R$
with $\FpHS_R$.
\end{definition}
\paragraph{} % {{{-2
Let $V$ be a fractional pre-Hodge structure over a ring $R \subset \RR$.
For $p,q \in \QQ$, we denote with $h^{p,q}(V)$ the dimension of $V^{p,q}$.
We say that $V$ is \emph{pure} of \emph{weight}~$n \in \QQ$
if $h^{p,q}(V) \ne 0 \implies p + q = n$.
A \emph{fractional Hodge structure} is a fractional pre-Hodge structure
that is the direct sum of pure fractional pre-Hodge structures.
A \emph{pre-Hodge structure}~$V$ (without the adjective \emph{fractional})
is a fractional pre-Hodge structure
for which $h^{p,q}(V) \ne 0 \implies p,q \in \ZZ$.
If $V$ is both a fractional Hodge structure and a pre-Hodge structure,
then $V$ is a \emph{Hodge structure}, in the classical sense of the word.
\paragraph{} % {{{-2
Let $\DelS$ denote the Deligne torus~$\Res_{\CC/\RR} \Gm$.
Recall that a Hodge structure over~$R$ is completely described
by a representation $h \colon \DelS \to \GL(V)_\RR$, as follows:
for $z \in \DelS(\CC)$ and $v \in V^{p,q}$
we put $h(z) \cdot v = z^{-p}\bar z^{-q}v$.
Composing $h$ with the map $x \mapsto x^k \colon \DelS \to \DelS$
amounts to relabeling $V^{p,q}$ as~$V^{kp,kq}$.
Put $\tilde \DelS = \lim_\NN \DelS$,
where $\NN$ is ordered by divisibility,
and for $m \divides n$ we take the transition map $\DelS \to \DelS$
given by $x \mapsto x^{n/m}$.
Then $\tilde\DelS$ is a pro-algebraic group scheme,
and the category of fractional pre-Hodge structures over~$\RR$
is equivalent to $\Rep(\tilde\DelS)$.
\begin{definition} % {{{-2
Let $V$ be a fractional pre-Hodge structure over a ring $R \subset \RR$.
The \emph{Mumford--Tate group} of~$V$
is the smallest algebraic subgroup $\GB(V) \subset \GL(V)$ over~$R$
such that $h \colon \tilde\DelS \to \GL(V)_\RR$
factors through $\GB(V)_\RR \subset \GL(V)_\RR$.
Alternatively, let $\omega \colon \FpHS_R \to \Proj_R$
be the forgetful functor.
Then $\omega$ is a fibre functor,
and $\GB(V) = \iAut^\otimes(\omega|_{\Tangen{V}})$.
\end{definition}
\paragraph{} % {{{-2
\label{hodge-cocharacter}
Let $V$ be a pre-Hodge structure over a ring $R \subset \RR$.
Recall that this pre-Hodge structure is described by a morphism