forked from soumith/cudnn.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpatialDivisiveNormalization.lua
105 lines (94 loc) · 3.65 KB
/
SpatialDivisiveNormalization.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
local DivisiveNorm, parent = torch.class('cudnn.SpatialDivisiveNormalization', 'nn.Module')
local ffi = require 'ffi'
local errcheck = cudnn.errcheck
function DivisiveNorm:__init(size, alpha, beta, K)
parent.__init(self)
self.size = size or 5
self.alpha = alpha or 1e-4
self.beta = beta or 0.75
self.K = K or 2.0
assert(self.size >= 1 and self.size <= 16, "size has to be between 1 and 16")
assert(self.K >= 1e-5, "K has to be greater than 1e-5")
assert(self.beta >= 0.01, "Beta has to be > 0.01")
end
function DivisiveNorm:resetDescriptors()
-- create DivisiveNorm descriptor
self.DivisiveNormDesc = ffi.new('struct cudnnDivisiveNormDescriptor_t*[1]')
errcheck('cudnnCreateDivisiveNormDescriptor', self.DivisiveNormDesc)
errcheck('cudnnSetDivisiveNormDescriptor', self.DivisiveNormDesc[0], self.size,
self.alpha, self.beta, self.K);
local function destroyDesc(d)
errcheck('cudnnDestroyDivisiveNormDescriptor', d[0]);
end
ffi.gc(self.DivisiveNormDesc, destroyDesc)
end
function DivisiveNorm:createIODescriptors(input)
local batch = true
if input:dim() == 3 then
input = input:view(1, input:size(1), input:size(2), input:size(3))
batch = false
end
assert(input:dim() == 4 and input:isContiguous());
if not self.iDesc or
input:size(1) ~= self.iSize[1] or input:size(2) ~= self.iSize[2]
or input:size(3) ~= self.iSize[3] or input:size(4) ~= self.iSize[4] then
self.iSize = input:size()
self.gradInput:resizeAs(input)
self.output:resizeAs(input)
-- create input/output descriptor
self.iDesc = cudnn.toDescriptor(input)
if not batch then
self.gradInput = self.gradInput:view(self.gradInput:size(2),
self.gradInput:size(3),
self.gradInput:size(4))
self.output = self.output:view(self.output:size(2),
self.output:size(3),
self.output:size(4))
end
end
end
function DivisiveNorm:updateOutput(input)
if not self.DivisiveNormDesc then self:resetPoolDescriptors() end
self:createIODescriptors(input)
errcheck('cudnnDivisiveNormCrossChannelForward', cudnn.getHandle(),
self.DivisiveNormDesc[0],
'CUDNN_DivisiveNorm_CROSS_CHANNEL_DIM1',
cudnn.scalar(input, 1),
self.iDesc[0], input:data(),
cudnn.scalar(input, 0),
self.iDesc[0], self.output:data());
return self.output
end
function DivisiveNorm:updateGradInput(input, gradOutput)
assert(gradOutput:dim() == 3 or gradOutput:dim() == 4);
if not gradOutput:isContiguous() then
self._gradOutput = self._gradOutput or gradOutput.new()
self._gradOutput:resizeAs(gradOutput):copy(gradOutput)
gradOutput = self._gradOutput
end
if not self.DivisiveNormDesc then self:resetPoolDescriptors() end
self:createIODescriptors(input)
errcheck('cudnnDivisiveNormCrossChannelBackward',
cudnn.getHandle(), self.DivisiveNormDesc[0],
'CUDNN_DivisiveNorm_CROSS_CHANNEL_DIM1',
cudnn.scalar(input, 1),
self.iDesc[0], self.output:data(),
self.iDesc[0], gradOutput:data(),
self.iDesc[0], input:data(),
cudnn.scalar(input, 0),
self.iDesc[0], self.gradInput:data());
return self.gradInput
end
function DivisiveNorm:write(f)
self.DivisiveNormDesc = nil
self.iDesc = nil
local var = {}
for k,v in pairs(self) do
var[k] = v
end
f:writeObject(var)
end
function DivisiveNorm:clearState()
self._gradOutput = nil
return parent.clearState(self)
end