forked from soumith/cudnn.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TemporalConvolution.lua
132 lines (119 loc) · 4.93 KB
/
TemporalConvolution.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
local TemporalConvolution, parent =
torch.class('cudnn.TemporalConvolution', 'nn.TemporalConvolution')
--use cudnn to perform temporal convolutions
--note: if padH parameter is not passed, no padding will be performed, as in parent TemporalConvolution
--however, instead of separately padding data, as is required now for nn.TemporalConvolution,
--it is recommended to pass padding parameter to this routine and use cudnn implicit padding facilities.
--limitation is that padding will be equal on both sides.
function TemporalConvolution:__init(inputFrameSize, outputFrameSize,
kH, dH, padH)
local delayedReset = self.reset
local kW = inputFrameSize
local nInputPlane = 1 -- single channel
local nOutputPlane = outputFrameSize
self.inputFrameSize = inputFrameSize
self.outputFrameSize = outputFrameSize
cudnn.SpatialConvolution.__init(self, nInputPlane, nOutputPlane, kW, kH, 1, dH,0,padH)
self.weight = self.weight:view(nOutputPlane,inputFrameSize*kH)
self.gradWeight = self.gradWeight:view(outputFrameSize, inputFrameSize*kH)
--self.dW and self.kW now have different meaning than in nn.TemporalConvolution, because
--W and H are switched in temporal and spatial
end
function TemporalConvolution:createIODescriptors(input)
local sizeChanged = false
if not self.iDesc or not self.oDesc or
input:size(1) ~= self.iSize[1] or input:size(2) ~= self.iSize[2]
or input:size(3) ~= self.iSize[3] or input:size(4) ~= self.iSize[4] then
sizeChanged = true
end
cudnn.SpatialConvolution.createIODescriptors(self,input)
if sizeChanged then
self.oSize = self.output:size()
end
end
function TemporalConvolution:fastest(mode)
self = cudnn.SpatialConvolution.fastest(self,mode)
return self
end
function TemporalConvolution:setMode(fmode, bdmode, bwmode)
self = cudnn.SpatialConvolution.setMode(self,fmode, bdmode, bwmode)
return self
end
function TemporalConvolution:resetWeightDescriptors()
cudnn.SpatialConvolution.resetWeightDescriptors(self)
end
local function inputview(input)
local _input = input
if input:dim()==2 then
_input = input:view(1,input:size(1),input:size(2))
end
return _input:view(_input:size(1),1,_input:size(2),_input:size(3))
end
function TemporalConvolution:updateOutput(input)
local _input = inputview(input)
assert(_input:size(4) == self.inputFrameSize,'invalid input frame size')
self.buffer = self.buffer or input.new()
self._output = self._output or input.new()
if self.output:storage() then self._output:set(self.output:storage()) else self._output = self.output end
if self.buffer:storage() then self.output:set(self.buffer:storage(), 1, self.output:size()) else self.output = self.buffer end
cudnn.SpatialConvolution.updateOutput(self,_input)
self.buffer = self.output:view(self.oSize):transpose(2,3)
self.output = self._output:resize(self.buffer:size()):copy(self.buffer)
-- self.output here is always 4D, use input dimensions to properly view output
if input:dim()==3 then
self.output=self.output:view(self.oSize[1], self.oSize[3],self.oSize[2])
else
self.output=self.output:view(self.oSize[3], self.oSize[2])
end
return self.output
end
local function transposeGradOutput(src,dst)
assert(src:dim() == 2 or src:dim() == 3, 'gradOutput has to be 2D or 3D');
local srctransposed = src:transpose(src:dim(),src:dim()-1)
dst:resize(srctransposed:size())
dst:copy(srctransposed)
if src:dim()==3 then
dst = dst:view(dst:size(1),dst:size(2),dst:size(3),1)
else
dst = dst:view(dst:size(1),dst:size(2),1)
end
return dst
end
function TemporalConvolution:updateGradInput(input, gradOutput)
if not self.gradInput then return end
local _gradOutput = transposeGradOutput(gradOutput,self.buffer)
local _input = inputview(input)
self.gradInput = cudnn.SpatialConvolution.updateGradInput(self,_input, _gradOutput)
if input:dim()==3 then
self.gradInput = self.gradInput:view(self.iSize[1],self.iSize[3],self.iSize[4])
else
self.gradInput = self.gradInput:view(self.iSize[3],self.iSize[4])
end
return self.gradInput
end
function TemporalConvolution:accGradParameters(input,gradOutput,scale)
--2d (4d) view of input
local _input = inputview(input)
-- transpose gradOutput (it will likely be transposed twice, hopefully, no big deal
local _gradOutput = transposeGradOutput(gradOutput,self.buffer)
cudnn.SpatialConvolution.accGradParameters(self,_input,_gradOutput,scale)
end
function TemporalConvolution:clearDesc()
self.buffer = nil
self._output = nil
self.oSize = nil
end
function TemporalConvolution:write(f)
self:clearDesc()
cudnn.SpatialConvolution.clearDesc(self)
local var = {}
for k,v in pairs(self) do
var[k] = v
end
f:writeObject(var)
end
function TemporalConvolution:clearState()
self:clearDesc()
nn.utils.clear(self, '_input', '_gradOutput')
return parent.clearState(self)
end