forked from soumith/cudnn.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
VolumetricConvolution.lua
412 lines (380 loc) · 17.1 KB
/
VolumetricConvolution.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
local VolumetricConvolution, parent
= torch.class('cudnn.VolumetricConvolution', 'nn.VolumetricConvolution')
local ffi = require 'ffi'
local errcheck = cudnn.errcheck
local autotunerCache = {}
autotunerCache[1] = {} -- forward
autotunerCache[2] = {} -- backwardFilter
autotunerCache[3] = {} -- backwardData
-- if you change the configuration of the module manually, call this
function VolumetricConvolution:resetWeightDescriptors()
assert(cudnn.typemap[torch.typename(self.weight)], 'Only Cuda supported duh!')
assert(cudnn.typemap[torch.typename(self.bias)] or not self.bias, 'Only Cuda supported duh!')
-- create filterDescriptor for weight
self.weightDesc = ffi.new('struct cudnnFilterStruct*[1]')
errcheck('cudnnCreateFilterDescriptor', self.weightDesc)
local desc = torch.IntTensor({self.nOutputPlane, self.nInputPlane,
self.kT, self.kH, self.kW})
errcheck('cudnnSetFilterNdDescriptor', self.weightDesc[0],
cudnn.typemap[torch.typename(self.weight)], 'CUDNN_TENSOR_NCHW', 5,
desc:data());
local function destroyWDesc(d)
errcheck('cudnnDestroyFilterDescriptor', d[0]);
end
ffi.gc(self.weightDesc, destroyWDesc)
-- create descriptor for bias
self.biasDesc = cudnn.toDescriptor(self.bias:view(1, self.nOutputPlane,
1, 1))
end
function VolumetricConvolution:fastest(mode)
if mode == nil then mode = true end
self.fastest_mode = mode
self.iSize = self.iSize or torch.LongStorage(4)
self.iSize:fill(0)
return self
end
function VolumetricConvolution:setMode(fmode, bdmode, bwmode)
if fmode ~= nil then
self.fmode = fmode
end
if bdmode ~= nil then
self.bdmode = bdmode
end
if bwmode ~= nil then
self.bwmode = bwmode
end
self.iSize = self.iSize or torch.LongStorage(4)
self.iSize:fill(0)
return self
end
function VolumetricConvolution:resetMode()
self.fmode = nil
self.bdmode = nil
self.bwmode = nil
return self
end
function VolumetricConvolution:createIODescriptors(input)
local batch = true
if input:dim() == 4 then
input = input:view(1, input:size(1), input:size(2),
input:size(3), input:size(4))
batch = false
end
assert(input:dim() == 5 and input:isContiguous());
self.iSize = self.iSize or torch.LongStorage(4):fill(0)
if not self.iDesc or not self.oDesc or
input:size(1) ~= self.iSize[1] or input:size(2) ~= self.iSize[2]
or input:size(3) ~= self.iSize[3] or input:size(4) ~= self.iSize[4]
or input:size(5) ~= self.iSize[5] then
self.iSize = input:size()
-- create input descriptor
self.iDesc = cudnn.toDescriptor(input)
-- create conv descriptor
self.convDesc = ffi.new('struct cudnnConvolutionStruct*[1]')
errcheck('cudnnCreateConvolutionDescriptor', self.convDesc)
local pad = torch.IntTensor({self.padT, self.padH, self.padW})
local stride = torch.IntTensor({self.dT, self.dH, self.dW})
local upscale = torch.IntTensor({1,1,1})
errcheck('cudnnSetConvolutionNdDescriptor', self.convDesc[0],
3, pad:data(),
stride:data(), upscale:data(), 'CUDNN_CROSS_CORRELATION',
cudnn.configmap(torch.type(self.weight)));
local function destroyConvDesc(d)
errcheck('cudnnDestroyConvolutionDescriptor', d[0]);
end
ffi.gc(self.convDesc, destroyConvDesc)
-- create output descriptor and resize output
local oSize = torch.IntTensor(5)
local oSizeD = oSize:data()
errcheck('cudnnGetConvolutionNdForwardOutputDim',
self.convDesc[0], self.iDesc[0],
self.weightDesc[0], 5, oSizeD)
self.output:resize(oSize:long():storage())
-- create descriptor for output
self.oDesc = cudnn.toDescriptor(self.output)
self.oDescBias = cudnn.toDescriptor(
self.output:view(self.output:size(1),
self.output:size(2),
self.output:size(3)*self.output:size(4),
self.output:size(5)))
-----------------------------------------------------------------------
local function shape(x)
return table.concat(x:size():totable(),'x')
end
local autotunerHash = shape(self.weight) .. ';'
.. shape(input) .. ';'
.. shape(self.output)
local maxBufSize = 0
-- create forwardAlgorithm descriptors
local algType = ffi.new("cudnnConvolutionFwdAlgo_t[?]", 1)
local algSearchMode = 'CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT'
local algWorkspaceLimit = self.workspace_limit
or (self.nInputPlane * self.kH * self.kW * 4) -- 4 = sizeof int/float.
if self.fastest_mode or cudnn.fastest == true then
algSearchMode = 'CUDNN_CONVOLUTION_FWD_PREFER_FASTEST'
end
if cudnn.benchmark then -- the manual auto-tuner is run
if autotunerCache[1][autotunerHash] then
algType[0] = autotunerCache[1][autotunerHash]
if cudnn.verbose then
print('Autotuning VMC FW: using cached algo = ', algType[0], ' for: ', autotunerHash)
end
else
local perfResults = ffi.new("cudnnConvolutionFwdAlgoPerf_t[?]", 1)
local intt = torch.IntTensor(1);
errcheck('cudnnFindConvolutionForwardAlgorithm',
cudnn.getHandle(),
self.iDesc[0], self.weightDesc[0],
self.convDesc[0], self.oDesc[0],
1, intt:data(), perfResults)
algType[0] = perfResults[0].algo
autotunerCache[1][autotunerHash] = perfResults[0].algo
if cudnn.verbose then
print(string.format(
"\nAutotuning VMC Forward: Time: %3.5f Memory: %8d Algorithm: %d"
.. " Weight: %15s Input: %15s Output: %15s",
perfResults[0].time, tonumber(perfResults[0].memory),
tonumber(perfResults[0].algo),
shape(self.weight), shape(input),
shape(self.output)))
end
end
else
errcheck('cudnnGetConvolutionForwardAlgorithm',
cudnn.getHandle(),
self.iDesc[0], self.weightDesc[0],
self.convDesc[0], self.oDesc[0],
algSearchMode, algWorkspaceLimit, algType)
end
algType[0] = self.fmode or algType[0]
self.fwdAlgType = algType
local bufSize = torch.LongTensor(1)
errcheck('cudnnGetConvolutionForwardWorkspaceSize',
cudnn.getHandle(),
self.iDesc[0], self.weightDesc[0],
self.convDesc[0], self.oDesc[0],
algType[0], bufSize:data())
maxBufSize = math.max(maxBufSize, bufSize[1])
-- create backwardFilterAlgorithm descriptors
local algType = ffi.new("cudnnConvolutionBwdFilterAlgo_t[?]", 1)
local algSearchMode = 'CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE'
local algWorkspaceLimit = self.workspace_limit
or (self.nInputPlane * self.kH * self.kW * 4) -- 4 = sizeof int/float.
if self.fastest_mode or cudnn.fastest == true then
algSearchMode = 'CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST'
end
if cudnn.benchmark then -- the manual auto-tuner is run
if autotunerCache[2][autotunerHash] then
algType[0] = autotunerCache[2][autotunerHash]
if cudnn.verbose then
print('Autotuning VMC BWF: using cached algo = ', algType[0], ' for: ', autotunerHash)
end
else
local perfResults = ffi.new("cudnnConvolutionBwdFilterAlgoPerf_t[?]", 1)
local intt = torch.IntTensor(1);
errcheck('cudnnFindConvolutionBackwardFilterAlgorithm',
cudnn.getHandle(),
self.iDesc[0], self.oDesc[0],
self.convDesc[0], self.weightDesc[0],
1, intt:data(), perfResults)
algType[0] = perfResults[0].algo
autotunerCache[2][autotunerHash] = perfResults[0].algo
if cudnn.verbose then
print(string.format(
"Autotuning backwardFilter: Time: %3.5f Memory: %8d Algorithm: %d"
.. " Weight: %15s Input: %15s Output: %15s",
perfResults[0].time, tonumber(perfResults[0].memory),
tonumber(perfResults[0].algo),
shape(self.weight), shape(input),
shape(self.output)))
end
end
else
errcheck('cudnnGetConvolutionBackwardFilterAlgorithm',
cudnn.getHandle(),
self.iDesc[0], self.oDesc[0],
self.convDesc[0], self.weightDesc[0],
algSearchMode, algWorkspaceLimit, algType)
end
algType[0] = self.bwmode or algType[0]
self.bwdFilterAlgType = algType
local bufSize = torch.LongTensor(1)
errcheck('cudnnGetConvolutionBackwardFilterWorkspaceSize',
cudnn.getHandle(),
self.iDesc[0], self.oDesc[0],
self.convDesc[0], self.weightDesc[0],
algType[0], bufSize:data())
maxBufSize = math.max(maxBufSize, bufSize[1])
-- create backwardDataAlgorithm descriptors
local algType = ffi.new("cudnnConvolutionBwdDataAlgo_t[?]", 1)
local algSearchMode = 'CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE'
local algWorkspaceLimit = self.workspace_limit
or (self.nInputPlane * self.kH * self.kW * 4) -- 4 = sizeof int/float.
if self.fastest_mode or cudnn.fastest == true then
algSearchMode = 'CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST'
end
if cudnn.benchmark then -- the manual auto-tuner is run
if autotunerCache[3][autotunerHash] then
algType[0] = autotunerCache[3][autotunerHash]
if cudnn.verbose then
print('Autotuning VMC BWD: using cached algo = ', algType[0], ' for: ', autotunerHash)
end
else
local perfResults = ffi.new("cudnnConvolutionBwdDataAlgoPerf_t[?]", 1)
local intt = torch.IntTensor(1);
errcheck('cudnnFindConvolutionBackwardDataAlgorithm',
cudnn.getHandle(),
self.weightDesc[0], self.oDesc[0],
self.convDesc[0], self.iDesc[0],
1, intt:data(), perfResults)
algType[0] = perfResults[0].algo
autotunerCache[3][autotunerHash] = perfResults[0].algo
if cudnn.verbose then
print(string.format(
"Autotuning backwardData: Time: %3.5f Memory: %8d Algorithm: %d"
.. " Weight: %15s Input: %15s Output: %15s\n",
perfResults[0].time, tonumber(perfResults[0].memory),
tonumber(perfResults[0].algo),
shape(self.weight), shape(input),
shape(self.output)))
end
end
else
errcheck('cudnnGetConvolutionBackwardDataAlgorithm',
cudnn.getHandle(),
self.weightDesc[0], self.oDesc[0],
self.convDesc[0], self.iDesc[0],
algSearchMode, algWorkspaceLimit, algType)
end
algType[0] = self.bdmode or algType[0]
self.bwdDataAlgType = algType
local bufSize = torch.LongTensor(1)
errcheck('cudnnGetConvolutionBackwardDataWorkspaceSize',
cudnn.getHandle(),
self.weightDesc[0], self.oDesc[0],
self.convDesc[0], self.iDesc[0],
algType[0], bufSize:data())
maxBufSize = math.max(maxBufSize, bufSize[1])
self.extraBuffer = self.extraBuffer or cudnn.getSharedWorkspace()
self.extraBuffer = self.extraBuffer:cuda() -- always force float
self.extraBufferSizeInBytes =
self.extraBuffer:nElement() * 4 -- extraBuffer is always float
if maxBufSize > self.extraBufferSizeInBytes then
self.extraBuffer:resize(math.ceil(maxBufSize / 4))
self.extraBufferSizeInBytes = maxBufSize
end
-----------------------------------------------------------------------
if not batch then
self.output = self.output:view(self.output:size(2),
self.output:size(3),
self.output:size(4),
self.output:size(5))
end
end
end
local function makeContiguous(self, input, gradOutput)
if not input:isContiguous() then
self._input = self._input or input.new()
self._input:typeAs(input):resizeAs(input):copy(input)
input = self._input
end
if gradOutput and not gradOutput:isContiguous() then
self._gradOutput = self._gradOutput or gradOutput.new()
self._gradOutput:typeAs(gradOutput):resizeAs(gradOutput):copy(gradOutput)
gradOutput = self._gradOutput
end
return input, gradOutput
end
function VolumetricConvolution:updateOutput(input)
if not self.weightDesc then self:resetWeightDescriptors() end
input = makeContiguous(self, input)
self:createIODescriptors(input)
errcheck('cudnnConvolutionForward', cudnn.getHandle(),
cudnn.scalar(input, 1),
self.iDesc[0], input:data(),
self.weightDesc[0], self.weight:data(),
self.convDesc[0], self.fwdAlgType[0],
self.extraBuffer:data(), self.extraBufferSizeInBytes,
cudnn.scalar(input, 0),
self.oDesc[0], self.output:data());
errcheck('cudnnAddTensor', cudnn.getHandle(),
cudnn.scalar(input, 1),
self.biasDesc[0], self.bias:data(), cudnn.scalar(input, 1),
self.oDescBias[0], self.output:data());
return self.output
end
function VolumetricConvolution:updateGradInput(input, gradOutput)
if not self.gradInput then return end
self.gradInput:resizeAs(input)
input, gradOutput = makeContiguous(self, input, gradOutput)
assert(gradOutput:dim() == 4 or gradOutput:dim() == 5,
'gradOutput has to be a 4D or 5D tensor');
if not self.weightDesc then self:resetWeightDescriptors() end
self:createIODescriptors(input)
errcheck('cudnnConvolutionBackwardData', cudnn.getHandle(),
cudnn.scalar(input, 1),
self.weightDesc[0], self.weight:data(),
self.oDesc[0], gradOutput:data(),
self.convDesc[0],
self.bwdDataAlgType[0],
self.extraBuffer:data(), self.extraBufferSizeInBytes,
cudnn.scalar(input, 0),
self.iDesc[0], self.gradInput:data());
return self.gradInput
end
function VolumetricConvolution:accGradParameters(input, gradOutput, scale)
self.scaleT = self.scaleT or self.weight.new(1)
-- this line forces this member to always be on CPU (needed for cudnn)
self.scaleT = torch.type(self.weight) == 'torch.CudaDoubleTensor'
and self.scaleT:double() or self.scaleT:float()
scale = scale or 1.0
self.scaleT[1] = scale
input, gradOutput = makeContiguous(self, input, gradOutput)
assert(gradOutput:dim() == 4 or gradOutput:dim() == 5,
'gradOutput has to be a 4D or 5D tensor');
self:createIODescriptors(input)
if not self.weightDesc then self:resetWeightDescriptors() end
-- gradBias
errcheck('cudnnConvolutionBackwardBias', cudnn.getHandle(),
self.scaleT:data(),
self.oDescBias[0], gradOutput:data(),
cudnn.scalar(input, 1),
self.biasDesc[0], self.gradBias:data());
-- gradWeight
errcheck('cudnnConvolutionBackwardFilter', cudnn.getHandle(),
self.scaleT:data(),
self.iDesc[0], input:data(),
self.oDesc[0], gradOutput:data(),
self.convDesc[0],
self.bwdFilterAlgType[0],
self.extraBuffer:data(), self.extraBufferSizeInBytes,
cudnn.scalar(input, 1),
self.weightDesc[0], self.gradWeight:data());
end
function VolumetricConvolution:clearDesc()
self.weightDesc = nil
self.biasDesc = nil
self.convDesc = nil
self.iDesc = nil
self.oDesc = nil
self.oDescBias = nil
self.fwdAlgType = nil
self.bwdDataAlgType = nil
self.bwdFilterAlgType = nil
self.extraBuffer = nil
self.extraBufferInBytes = nil
self.scaleT = nil
end
function VolumetricConvolution:write(f)
self:clearDesc()
local var = {}
for k,v in pairs(self) do
var[k] = v
end
f:writeObject(var)
end
function VolumetricConvolution:clearState()
self:clearDesc()
nn.utils.clear(self, 'extraBuffer', '_input', '_gradOutput')
return nn.Module.clearState(self)
end