Skip to content

Latest commit

 

History

History
108 lines (82 loc) · 2.69 KB

README.rst

File metadata and controls

108 lines (82 loc) · 2.69 KB

Resume parser

Premium resume parsing services have been moved to [Resume-Parser](https://www.resume-parser.com/application/resumes). Please try the demo for free and give us your [feedback](https://www.resume-parser.com)

Premium resume parsing services have been moved to Resume-Parser. Please try the demo for free and give us your feedback

A resume parser used for extracting information from resumes

Built with ❤︎ and ☕ by Kumar Rajwani and Brian Njoroge


Features

  • Extract name
  • Extract email
  • Extract mobile numbers
  • Extract skills
  • Extract total experience
  • Extract college name
  • Extract degree
  • Extract designation
  • Extract company names

Installation

  • You can install this package using
pip install resume-parser
  • For NLP operations we use spacy and nltk. Install them using below commands:
# spaCy
python -m spacy download en_core_web_sm

# nltk
python -m nltk.downloader stopwords
python -m nltk.downloader punkt
python -m nltk.downloader averaged_perceptron_tagger
python -m nltk.downloader universal_tagset
python -m nltk.downloader wordnet
python -m nltk.downloader brown
python -m nltk.downloader maxent_ne_chunker

Supported File Formats

  • PDF and DOCx and TXT files are supported on all Operating Systems

Usage

  • Import it in your Python project
from resume_parser import resumeparse

data = resumeparse.read_file('/path/to/resume/file')

Result

The module would return a dictionary with result as follows:

{'degree': ['BSc','MSc'],
     'designition': [
         'content writer',
         'data scientist',
         'systems administrator',
     ],
     'email': 'maunarokguy@gmail.com',
     'name': 'Brian Njoroge',
     'phone': '+918511593595',
     'skills': [
         'Python',
         ' C++',
         'Power BI',
         'Tensorflow',
         'Keras',
         'Pytorch',
         'Scikit-Learn',
         'Pandas',
         'NLTK',
         'OpenCv',
         'Numpy',
         'Matplotlib',
         'Seaborn',
         'Django',
         'Linux',
         'Docker'],
     'total_exp': 3,
     'university': ['gujarat university', 'wuhan university', 'egerton university']}

[<img alt="alt_text" src="coffee.png" />](https://www.payumoney.com/paybypayumoney/#/147695053B73CAB82672E715A52F9AA5)