Premium resume parsing services have been moved to [Resume-Parser](https://www.resume-parser.com/application/resumes). Please try the demo for free and give us your [feedback](https://www.resume-parser.com)
Premium resume parsing services have been moved to Resume-Parser. Please try the demo for free and give us your feedback
A resume parser used for extracting information from resumes
Built with ❤︎ and ☕ by Kumar Rajwani and Brian Njoroge
- Extract name
- Extract email
- Extract mobile numbers
- Extract skills
- Extract total experience
- Extract college name
- Extract degree
- Extract designation
- Extract company names
- You can install this package using
pip install resume-parser
- For NLP operations we use spacy and nltk. Install them using below commands:
# spaCy
python -m spacy download en_core_web_sm
# nltk
python -m nltk.downloader stopwords
python -m nltk.downloader punkt
python -m nltk.downloader averaged_perceptron_tagger
python -m nltk.downloader universal_tagset
python -m nltk.downloader wordnet
python -m nltk.downloader brown
python -m nltk.downloader maxent_ne_chunker
- PDF and DOCx and TXT files are supported on all Operating Systems
- Import it in your Python project
from resume_parser import resumeparse
data = resumeparse.read_file('/path/to/resume/file')
The module would return a dictionary with result as follows:
{'degree': ['BSc','MSc'], 'designition': [ 'content writer', 'data scientist', 'systems administrator', ], 'email': 'maunarokguy@gmail.com', 'name': 'Brian Njoroge', 'phone': '+918511593595', 'skills': [ 'Python', ' C++', 'Power BI', 'Tensorflow', 'Keras', 'Pytorch', 'Scikit-Learn', 'Pandas', 'NLTK', 'OpenCv', 'Numpy', 'Matplotlib', 'Seaborn', 'Django', 'Linux', 'Docker'], 'total_exp': 3, 'university': ['gujarat university', 'wuhan university', 'egerton university']}
[<img alt="alt_text" src="coffee.png" />](https://www.payumoney.com/paybypayumoney/#/147695053B73CAB82672E715A52F9AA5)