-
Notifications
You must be signed in to change notification settings - Fork 1
/
bitnet.py
326 lines (272 loc) · 11.6 KB
/
bitnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import torch
import torch.nn as nn
from torch.nn import functional as F
# hyperparameters
print('------------')
batch_size = 32 # how many independent sequences will we process in parallel?
block_size = 256 # what is the maximum context length for predictions?
max_iters = 10000
eval_interval = 500
learning_rate = 0.0008
print(f'LEARNING RATE: {learning_rate}')
device = 'mps' if torch.backends.mps.is_available() else 'cpu'
print(f'DEVICE: {device}')
eval_iters = 50
n_embd = 384
n_head = 4
assert n_embd % n_head == 0, "n_embd must be divisible by n_head"
n_layer = 2
dropout = 0.2
# ------------
torch.manual_seed(1337)
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
text = f.read()
# TODO: make BPE tokenizer
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
# Train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
split_num = 0.9
n = int(split_num*len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
print(f'DATA SPLIT: {split_num}')
# data loading
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
patrick.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = patrick(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
patrick.train()
return out
class CustomLinear(nn.Linear):
def __init__(self, in_features, out_features, bias=True, epsilon=1e-5):
super(CustomLinear, self).__init__(in_features, out_features, bias)
self.epsilon = epsilon
# Initialize weights and biases here if you want to use custom initialization
self.reset_parameters() # You can override this method instead if you prefer
def reset_parameters(self):
super().reset_parameters() # Call default initialization
self.apply_custom_weight_modifications()
def apply_custom_weight_modifications(self):
with torch.no_grad():
gamma = torch.abs(self.weight).mean()
normalized_weights = self.weight / (gamma) #+ self.epsilon) # TODO: fix epsilon
clipped_weights = torch.clamp(torch.round(normalized_weights), -1, 1)
self.weight.copy_(clipped_weights)
def forward(self, input):
# Hook to clamp the weights before each forward pass
self.weight.data = self.clamp_weights(self.weight.data)
return super(CustomLinear, self).forward(input)
def clamp_weights(self, weights):
gamma = torch.abs(weights).mean()
normalized_weights = weights / (gamma + self.epsilon)
clipped_weights = torch.clamp(torch.round(normalized_weights), -1, 1)
return clipped_weights
def verify_clamping(self):
# Check if any weights are outside the bounds [-1, 1]
if not torch.all(torch.ge(self.weight, -1)) or not torch.all(torch.le(self.weight, 1)):
# print("Warning: Weights are not correctly clamped.")
pass
return False
else:
print("All weights are correctly clamped between [-1, 1].")
return True
# Function to print the weights of all linear layers
def print_linear_layer_weights(model):
for name, module in model.named_modules():
if isinstance(module, nn.Linear) or isinstance(module, CustomLinear): # Check for both in case you are using the custom class
print(f"Weights of '{name}':\n{module.weight.data}")
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size):
super().__init__()
self.key = CustomLinear(n_embd, head_size, bias=False)
self.query = CustomLinear(n_embd, head_size, bias=False)
self.value = CustomLinear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, head size)
B,T,C = x.shape
k = self.key(x) # (B,T,hs)
q = self.query(x) # (B,T,hs)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,hs)
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = CustomLinear(head_size * num_heads, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
CustomLinear(n_embd, 4 * n_embd),
nn.ReLU(),
CustomLinear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class BitLM(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = CustomLinear(n_embd, vocab_size)
# better init, not covered in the original GPT video, but important, will cover in followup video
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
def verify_all_clamping(self):
for module in self.modules():
if isinstance(module, CustomLinear):
if not module.verify_clamping():
return False
return True
# ------------
patrick = BitLM()
m = patrick.to(device)
print(f'MODEL: {patrick.__class__.__name__}')
# print the number of parameters in the model
print(f'MODEL PARAMS: {sum(p.numel() for p in m.parameters())/1e6} M')
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(patrick.parameters(), lr=learning_rate)
print(f'OPTIMIZER: {optimizer.__class__.__name__}')
print('------------')
start_iter = 0
load_train = True
if load_train:
# load checkpoint weights
print("loading checkpoint weights")
checkpoint_path = 'checkpoints/checkpoint_iter_43501.pth' # Replace with the path to your checkpoint
checkpoint = torch.load(checkpoint_path)
patrick.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_iter = checkpoint['iter']
print('training...')
for iter in range(max_iters):
if start_iter:
iter += start_iter
else:
iter = iter
# every once in a while evaluate the loss on train and val sets
if iter % eval_interval == 0 or iter == max_iters - 1:
losses = estimate_loss()
print(f"step {iter} | train loss {losses['train']:.4f} | val loss {losses['val']:.4f}")
checkpoint = {
'iter': iter + 1,
'state_dict': patrick.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(checkpoint, f'checkpoints/checkpoint_iter_{iter+1}.pth')
# sample a batch of data
xb, yb = get_batch('train')
# evaluate the loss
logits, loss = patrick(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# print("WEIGHTS------")
# print_linear_layer_weights(patrick)
# print("------WEIGHTS")
# generate from the model
print("WEIGHT VERIFICATION:", patrick.verify_all_clamping())
print('GENERATING TEXT...')
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print("GENERATION: ", patrick.generate(context, max_new_tokens=100)[0].tolist())
print("DECODE: ", decode(patrick.generate(context, max_new_tokens=100)[0].tolist()))
#open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))
# Call the function