-
Notifications
You must be signed in to change notification settings - Fork 3
/
aice_hi_seasonal.py
139 lines (105 loc) · 4.1 KB
/
aice_hi_seasonal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from numpy import *
from netCDF4 import Dataset
from matplotlib.pyplot import *
from seasonal_avg_cice import *
# Creates a 4x2 plot of seasonally averaged sea ice concentration (top row) and
# thickness (bottom row) over the last year of simulation.
# Input:
# cice_file = path to CICE output file with 5-day averages, containing at least
# one complete Dec-Nov period (if there are multiple such periods,
# this script uses the last one)
# save = optional boolean to save the figure to a file, rather than displaying
# it on the screen
# fig_name = if save=True, path to the desired filename for figure
def aice_hi_seasonal (cice_file, save=False, fig_name=None):
# Season names for titles
season_names = ['DJF', 'MAM', 'JJA', 'SON']
# Degrees to radians conversion
deg2rad = pi/180.0
# Read the CICE grid
id = Dataset(cice_file, 'r')
lon_tmp = id.variables['TLON'][:-15,:]
lat_tmp = id.variables['TLAT'][:-15,:]
num_lon = id.variables['TLON'].shape[1]
num_lat = id.variables['TLAT'].shape[0]
id.close()
# Wrap the periodic boundary by 1 cell
lon = ma.empty([size(lon_tmp,0), size(lon_tmp,1)+1])
lat = ma.empty([size(lat_tmp,0), size(lat_tmp,1)+1])
lon[:,:-1] = lon_tmp
lon[:,-1] = lon_tmp[:,0]
lat[:,:-1] = lat_tmp
lat[:,-1] = lat_tmp[:,0]
# Read seasonally averaged fields
aice_tmp = seasonal_avg_cice(cice_file, 'aice', [num_lat, num_lon])
hi_tmp = seasonal_avg_cice(cice_file, 'hi', [num_lat, num_lon])
# Chop off northern boundary
aice_tmp = aice_tmp[:,:-15,:]
hi_tmp = hi_tmp[:,:-15,:]
# Wrap the periodic boundary
aice = ma.empty([size(aice_tmp,0), size(aice_tmp,1), size(aice_tmp,2)+1])
aice[:,:,:-1] = aice_tmp
aice[:,:,-1] = aice_tmp[:,:,0]
hi = ma.empty([size(hi_tmp,0), size(hi_tmp,1), size(hi_tmp,2)+1])
hi[:,:,:-1] = hi_tmp
hi[:,:,-1] = hi_tmp[:,:,0]
# Get circumpolar x and y coordinates for plotting
x = -(lat+90)*cos(lon*deg2rad+pi/2)
y = (lat+90)*sin(lon*deg2rad+pi/2)
# Set boundaries of plot
bdry1 = -35
bdry2 = 35
bdry3 = -33
bdry4 = 37
# Set consistent colour levels
lev1 = linspace(0, 1, num=50)
lev2 = linspace(0, 3, num=50)
# Plot
fig = figure(figsize=(20,9))
# Loop over seasons
for season in range(4):
# Concentration
ax = fig.add_subplot(2, 4, season+1, aspect='equal')
img = contourf(x, y, aice[season,:,:], lev1)
xlim([bdry1, bdry2])
ylim([bdry3, bdry4])
axis('off')
if season == 0:
text(-39, 0, 'aice (1)', fontsize=21, ha='right')
title(season_names[season], fontsize=24)
if season == 3:
# Add colorbar
cbaxes1 = fig.add_axes([0.92, 0.55, 0.01, 0.3])
cbar1 = colorbar(img, ticks=arange(0,1+0.25,0.25), cax=cbaxes1)
cbar1.ax.tick_params(labelsize=16)
# Thickness
ax = fig.add_subplot(2, 4, season+5, aspect='equal')
img = contourf(x, y, hi[season,:,:], lev2, extend='both')
xlim([bdry1, bdry2])
ylim([bdry3, bdry4])
axis('off')
if season == 0:
text(-39, 0, 'hi (m)', fontsize=21, ha='right')
if season == 3:
# Add colorbar
cbaxes2 = fig.add_axes([0.92, 0.15, 0.01, 0.3])
cbar2 = colorbar(img, ticks=arange(0,3+0.5,0.5), cax=cbaxes2)
cbar2.ax.tick_params(labelsize=16)
# Make plots closer together
subplots_adjust(wspace=0.025,hspace=0.025)
# Finished
if save:
fig.savefig(fig_name)
else:
fig.show()
# Command-line interface
if __name__ == "__main__":
cice_file = raw_input("Path to CICE file, containing at least one complete Dec-Nov period: ")
action = raw_input("Save figure (s) or display on screen (d)? ")
if action == 's':
save = True
fig_name = raw_input("File name for figure: ")
elif action == 'd':
save = False
fig_name = None
aice_hi_seasonal(cice_file, save, fig_name)