-
Notifications
You must be signed in to change notification settings - Fork 3
/
cartesian_grid_3d.py
44 lines (40 loc) · 1.7 KB
/
cartesian_grid_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from numpy import *
from cartesian_grid_2d import *
from calc_z import *
# Given ROMS grid variables, calculate Cartesian integrands (dx, dy, dz) as
# well as z-coordinates.
# Input:
# lon, lat, h, zice = 2D arrays containing values for latitude, longitude,
# bathymetry, and ice shelf draft. All have dimension
# latitude x longitude.
# theta_s, theta_b, hc, N = scalar parameters (check your grid file and roms.in)
# zeta = optional 2D array containing values for sea surface height at the
# desired timestep
# Output:
# dx, dy, dz, z = 3D arrays (dimension depth x latitude x longitude) containing
# Cartesian integrands (dx, dy, dz) and z-coordinates (z).
def cartesian_grid_3d (lon, lat, h, zice, theta_s, theta_b, hc, N, zeta=None):
# Calculate 2D dx and dy in another script
dx, dy = cartesian_grid_2d(lon, lat)
# Copy into 3D arrays, same at each depth level
dx = tile(dx, (N,1,1))
dy = tile(dy, (N,1,1))
# Save horizontal dimensions
num_lat = size(lon, 0)
num_lon = size(lon, 1)
# Get a 3D array of z-coordinates; sc_r and Cs_r are unused
z, sc_r, Cs_r = calc_z(h, zice, theta_s, theta_b, hc, N, zeta)
# We have z at the midpoint of each cell, now find it on the top and
# bottom edges of each cell
z_edges = zeros((N+1, num_lat, num_lon))
z_edges[1:-1,:,:] = 0.5*(z[0:-1,:,:] + z[1:,:,:])
# At surface, z=zice
z_edges[-1,:,:] = zice[:,:]
# Add zeta if it exists
if zeta is not None:
z_edges[-1,:,:] += zeta[:,:]
# At bottom, extrapolate
z_edges[0,:,:] = 2*z[0,:,:] - z_edges[1,:,:]
# Now find dz
dz = z_edges[1:,:,:] - z_edges[0:-1,:,:]
return dx, dy, dz, z