-
Notifications
You must be signed in to change notification settings - Fork 3
/
effective_thickness.py
135 lines (109 loc) · 4.77 KB
/
effective_thickness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from netCDF4 import Dataset
from numpy import *
from matplotlib.pyplot import *
from rotate_vector_cice import *
# Make a circumpolar plot of effective sea ice thickness (area*height).
# Input:
# file_path = path to CICE history file
# tstep = timestep in file_path to plot (1-indexed)
# colour_bounds = optional bounds on colour scale, stored as an array of size
# 2 with the lower bound first. If colour_bounds = None, then
# determine colour scale bounds automatically.
# save = optional boolean flag indicating that the plot should be saved to a file rather than
# displayed on the screen
# fig_name = if save=True, filename for figure
def effective_thickness (file_path, tstep, colour_bounds=None, save=False, fig_name=None):
deg2rad = pi/180
# Read sea ice concentration and thickness
id = Dataset(file_path, 'r')
aice = id.variables['aice'][tstep-1,:-15,:]
hi = id.variables['hi'][tstep-1,:-15,:]
data_tmp = aice*hi
# Read the correct lat and lon for this grid
lon_tmp = id.variables['TLON'][:-15,:]
lat_tmp = id.variables['TLAT'][:-15,:]
id.close()
# Wrap the periodic boundary by 1 cell
lon = ma.empty([size(lon_tmp,0), size(lon_tmp,1)+1])
lat = ma.empty([size(lat_tmp,0), size(lat_tmp,1)+1])
data = ma.empty([size(data_tmp,0), size(data_tmp,1)+1])
lon[:,:-1] = lon_tmp
lon[:,-1] = lon_tmp[:,0]
lat[:,:-1] = lat_tmp
lat[:,-1] = lat_tmp[:,0]
data[:,:-1] = data_tmp
data[:,-1] = data_tmp[:,0]
# Convert to spherical coordinates
x = -(lat+90)*cos(lon*deg2rad+pi/2)
y = (lat+90)*sin(lon*deg2rad+pi/2)
if colour_bounds is not None:
# User has set bounds on colour scale
lev = linspace(colour_bounds[0], colour_bounds[1], num=40)
else:
lev = linspace(amin(data), amax(data), num=40)
# Plot
fig = figure(figsize=(16,12))
fig.add_subplot(1,1,1, aspect='equal')
contourf(x, y, data, lev, extend='both')
cbar = colorbar()
cbar.ax.tick_params(labelsize=20)
title('Effective thickness (m)', fontsize=30)
axis('off')
if save:
fig.savefig(fig_name)
else:
fig.show()
# Command-line interface
if __name__ == "__main__":
file_path = raw_input("Path to CICE history file: ")
tstep = int(raw_input("Timestep number (starting at 1): "))
# Get colour bounds if necessary
colour_bounds = None
get_bounds = raw_input("Set bounds on colour scale (y/n)? ")
if get_bounds == 'y':
lower_bound = float(raw_input("Lower bound: "))
upper_bound = float(raw_input("Upper bound: "))
colour_bounds = [lower_bound, upper_bound]
action = raw_input("Save figure (s) or display in window (d)? ")
if action == 's':
save = True
fig_name = raw_input("File name for figure: ")
elif action == 'd':
save = False
fig_name = None
effective_thickness(file_path, tstep, colour_bounds, save, fig_name)
# Repeat until the user wants to exit
while True:
repeat = raw_input("Make another plot (y/n)? ")
if repeat == 'y':
while True:
# Ask for changes to the input parameters; repeat until the user is finished
changes = raw_input("Enter a parameter to change: (1) file path, (2) timestep number, (3) colour bounds, (4) save/display; or enter to continue: ")
if len(changes) == 0:
# No more changes to parameters
break
else:
if int(changes) == 1:
# New file path
file_path = raw_input("Path to CICE history file: ")
elif int(changes) == 2:
# New timestep number
tstep = int(raw_input("Timestep number (starting at 1): "))
elif int(changes) == 3:
# Get colour bounds if necessary
colour_bounds = None
get_bounds = raw_input("Set bounds on colour scale (y/n)? ")
if get_bounds == 'y':
lower_bound = float(raw_input("Lower bound: "))
upper_bound = float(raw_input("Upper bound: "))
colour_bounds = [lower_bound, upper_bound]
elif int(changes) == 4:
# Change from display to save, or vice versa
save = not save
if save:
# Get file name for figure
fig_name = raw_input("File name for figure: ")
# Make the plot
effective_thickness(file_path, tstep, colour_bounds, save, fig_name)
else:
break