-
Notifications
You must be signed in to change notification settings - Fork 162
/
eval.py
235 lines (193 loc) · 8.24 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding:utf-8 -*-
import cv2
import time
import os
import numpy as np
import tensorflow as tf
from tensorflow.python.client import timeline
from utils.utils_tool import logger, cfg
import matplotlib.pyplot as plt
tf.app.flags.DEFINE_string('test_data_path', None, '')
tf.app.flags.DEFINE_string('gpu_list', '0', '')
tf.app.flags.DEFINE_string('checkpoint_path', './', '')
tf.app.flags.DEFINE_string('output_dir', './results/', '')
tf.app.flags.DEFINE_bool('no_write_images', False, 'do not write images')
from nets import model
from pse import pse
FLAGS = tf.app.flags.FLAGS
logger.setLevel(cfg.debug)
def get_images():
'''
find image files in test data path
:return: list of files found
'''
files = []
exts = ['jpg', 'png', 'jpeg', 'JPG']
for parent, dirnames, filenames in os.walk(FLAGS.test_data_path):
for filename in filenames:
for ext in exts:
if filename.endswith(ext):
files.append(os.path.join(parent, filename))
break
logger.info('Find {} images'.format(len(files)))
return files
def resize_image(im, max_side_len=1200):
'''
resize image to a size multiple of 32 which is required by the network
:param im: the resized image
:param max_side_len: limit of max image size to avoid out of memory in gpu
:return: the resized image and the resize ratio
'''
h, w, _ = im.shape
resize_w = w
resize_h = h
# limit the max side
if max(resize_h, resize_w) > max_side_len:
ratio = float(max_side_len) / resize_h if resize_h > resize_w else float(max_side_len) / resize_w
else:
ratio = 1.
#ratio = float(max_side_len) / resize_h if resize_h > resize_w else float(max_side_len) / resize_w
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 + 1) * 32
resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 + 1) * 32
logger.info('resize_w:{}, resize_h:{}'.format(resize_w, resize_h))
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)
def detect(seg_maps, timer, image_w, image_h, min_area_thresh=10, seg_map_thresh=0.9, ratio = 1):
'''
restore text boxes from score map and geo map
:param seg_maps:
:param timer:
:param min_area_thresh:
:param seg_map_thresh: threshhold for seg map
:param ratio: compute each seg map thresh
:return:
'''
if len(seg_maps.shape) == 4:
seg_maps = seg_maps[0, :, :, ]
#get kernals, sequence: 0->n, max -> min
kernals = []
one = np.ones_like(seg_maps[..., 0], dtype=np.uint8)
zero = np.zeros_like(seg_maps[..., 0], dtype=np.uint8)
thresh = seg_map_thresh
for i in range(seg_maps.shape[-1]-1, -1, -1):
kernal = np.where(seg_maps[..., i]>thresh, one, zero)
kernals.append(kernal)
thresh = seg_map_thresh*ratio
start = time.time()
mask_res, label_values = pse(kernals, min_area_thresh)
timer['pse'] = time.time()-start
mask_res = np.array(mask_res)
mask_res_resized = cv2.resize(mask_res, (image_w, image_h), interpolation=cv2.INTER_NEAREST)
boxes = []
for label_value in label_values:
#(y,x)
points = np.argwhere(mask_res_resized==label_value)
points = points[:, (1,0)]
rect = cv2.minAreaRect(points)
box = cv2.boxPoints(rect)
boxes.append(box)
return np.array(boxes), kernals, timer
def show_score_geo(color_im, kernels, im_res):
fig = plt.figure()
cmap = plt.cm.hot
#
ax = fig.add_subplot(241)
im = kernels[0]*255
ax.imshow(im)
ax = fig.add_subplot(242)
im = kernels[1]*255
ax.imshow(im, cmap)
ax = fig.add_subplot(243)
im = kernels[2]*255
ax.imshow(im, cmap)
ax = fig.add_subplot(244)
im = kernels[3]*255
ax.imshow(im, cmap)
ax = fig.add_subplot(245)
im = kernels[4]*255
ax.imshow(im, cmap)
ax = fig.add_subplot(246)
im = kernels[5]*255
ax.imshow(im, cmap)
ax = fig.add_subplot(247)
im = color_im
ax.imshow(im)
ax = fig.add_subplot(248)
im = im_res
ax.imshow(im)
fig.show()
def main(argv=None):
import os
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
try:
os.makedirs(FLAGS.output_dir)
except OSError as e:
if e.errno != 17:
raise
with tf.get_default_graph().as_default():
input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
seg_maps_pred = model.model(input_images, is_training=False)
variable_averages = tf.train.ExponentialMovingAverage(0.997, global_step)
saver = tf.train.Saver(variable_averages.variables_to_restore())
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
ckpt_state = tf.train.get_checkpoint_state(FLAGS.checkpoint_path)
model_path = os.path.join(FLAGS.checkpoint_path, os.path.basename(ckpt_state.model_checkpoint_path))
logger.info('Restore from {}'.format(model_path))
saver.restore(sess, model_path)
im_fn_list = get_images()
for im_fn in im_fn_list:
im = cv2.imread(im_fn)[:, :, ::-1]
logger.debug('image file:{}'.format(im_fn))
start_time = time.time()
im_resized, (ratio_h, ratio_w) = resize_image(im)
h, w, _ = im_resized.shape
# options = tf.RunOptions(trace_level = tf.RunOptions.FULL_TRACE)
# run_metadata = tf.RunMetadata()
timer = {'net': 0, 'pse': 0}
start = time.time()
seg_maps = sess.run(seg_maps_pred, feed_dict={input_images: [im_resized]})
timer['net'] = time.time() - start
# fetched_timeline = timeline.Timeline(run_metadata.step_stats)
# chrome_trace = fetched_timeline.generate_chrome_trace_format()
# with open(os.path.join(FLAGS.output_dir, os.path.basename(im_fn).split('.')[0]+'.json'), 'w') as f:
# f.write(chrome_trace)
boxes, kernels, timer = detect(seg_maps=seg_maps, timer=timer, image_w=w, image_h=h)
logger.info('{} : net {:.0f}ms, pse {:.0f}ms'.format(
im_fn, timer['net']*1000, timer['pse']*1000))
if boxes is not None:
boxes = boxes.reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h
h, w, _ = im.shape
boxes[:, :, 0] = np.clip(boxes[:, :, 0], 0, w)
boxes[:, :, 1] = np.clip(boxes[:, :, 1], 0, h)
duration = time.time() - start_time
logger.info('[timing] {}'.format(duration))
# save to file
if boxes is not None:
res_file = os.path.join(
FLAGS.output_dir,
'{}.txt'.format(os.path.splitext(
os.path.basename(im_fn))[0]))
with open(res_file, 'w') as f:
num =0
for i in xrange(len(boxes)):
# to avoid submitting errors
box = boxes[i]
if np.linalg.norm(box[0] - box[1]) < 5 or np.linalg.norm(box[3]-box[0]) < 5:
continue
num += 1
f.write('{},{},{},{},{},{},{},{}\r\n'.format(
box[0, 0], box[0, 1], box[1, 0], box[1, 1], box[2, 0], box[2, 1], box[3, 0], box[3, 1]))
cv2.polylines(im[:, :, ::-1], [box.astype(np.int32).reshape((-1, 1, 2))], True, color=(255, 255, 0), thickness=2)
if not FLAGS.no_write_images:
img_path = os.path.join(FLAGS.output_dir, os.path.basename(im_fn))
cv2.imwrite(img_path, im[:, :, ::-1])
# show_score_geo(im_resized, kernels, im)
if __name__ == '__main__':
tf.app.run()