forked from rakarnik/ROSE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ROSE_main_turbo.py
executable file
·479 lines (350 loc) · 16.8 KB
/
ROSE_main_turbo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#mapEnhancerFromFactor.py
'''
PROGRAM TO STITCH TOGETHER REGIONS TO FORM ENHANCERS, MAP READ DENSITY TO STITCHED REGIONS,
AND RANK ENHANCERS BY READ DENSITY TO DISCOVER SUPER-ENHANCERS
APRIL 11, 2013
VERSION 0.1
CONTACT: youngcomputation@wi.mit.edu
'''
import sys
import ROSE_utils
import time
import os
from string import upper,join
from collections import defaultdict
#==================================================================
#=====================REGION STITCHING=============================
#==================================================================
def regionStitching(inputGFF,stitchWindow,tssWindow,annotFile,removeTSS=True):
print('PERFORMING REGION STITCHING')
#first have to turn bound region file into a locus collection
#need to make sure this names correctly... each region should have a unique name
boundCollection = ROSE_utils.gffToLocusCollection(inputGFF)
debugOutput = []
#filter out all bound regions that overlap the TSS of an ACTIVE GENE
if removeTSS:
#first make a locus collection of TSS
startDict = ROSE_utils.makeStartDict(annotFile)
#now makeTSS loci for active genes
removeTicker=0
#this loop makes a locus centered around +/- tssWindow of transcribed genes
#then adds it to the list tssLoci
tssLoci = []
for geneID in startDict.keys():
tssLoci.append(ROSE_utils.makeTSSLocus(geneID,startDict,tssWindow,tssWindow))
#this turns the tssLoci list into a LocusCollection
#50 is the internal parameter for LocusCollection and doesn't really matter
tssCollection = ROSE_utils.LocusCollection(tssLoci,50)
#gives all the loci in boundCollection
boundLoci = boundCollection.getLoci()
#this loop will check if each bound region is contained by the TSS exclusion zone
#this will drop out a lot of the promoter only regions that are tiny
#typical exclusion window is around 2kb
for locus in boundLoci:
if len(tssCollection.getContainers(locus,'both'))>0:
#if true, the bound locus overlaps an active gene
boundCollection.remove(locus)
debugOutput.append([locus.__str__(),locus.ID(),'CONTAINED'])
removeTicker+=1
print('REMOVED %s LOCI BECAUSE THEY WERE CONTAINED BY A TSS' % (removeTicker))
#boundCollection is now all enriched region loci that don't overlap an active TSS
stitchedCollection = boundCollection.stitchCollection(stitchWindow,'both')
if removeTSS:
#now replace any stitched region that overlap 2 distinct genes
#with the original loci that were there
fixedLoci = []
tssLoci = []
for geneID in startDict.keys():
tssLoci.append(ROSE_utils.makeTSSLocus(geneID,startDict,50,50))
#this turns the tssLoci list into a LocusCollection
#50 is the internal parameter for LocusCollection and doesn't really matter
tssCollection = ROSE_utils.LocusCollection(tssLoci,50)
removeTicker = 0
originalTicker = 0
for stitchedLocus in stitchedCollection.getLoci():
overlappingTSSLoci = tssCollection.getOverlap(stitchedLocus,'both')
tssNames = [startDict[tssLocus.ID()]['name'] for tssLocus in overlappingTSSLoci]
tssNames = ROSE_utils.uniquify(tssNames)
if len(tssNames) > 2:
#stitchedCollection.remove(stitchedLocus)
originalLoci = boundCollection.getOverlap(stitchedLocus,'both')
originalTicker+=len(originalLoci)
fixedLoci+=originalLoci
debugOutput.append([stitchedLocus.__str__(),stitchedLocus.ID(),'MULTIPLE_TSS'])
removeTicker+=1
else:
fixedLoci.append(stitchedLocus)
print('REMOVED %s STITCHED LOCI BECAUSE THEY OVERLAPPED MULTIPLE TSSs' % (removeTicker))
print('ADDED BACK %s ORIGINAL LOCI' % (originalTicker))
fixedCollection = ROSE_utils.LocusCollection(fixedLoci,50)
return fixedCollection,debugOutput
else:
return stitchedCollection,debugOutput
#==================================================================
#=====================REGION LINKING MAPPING=======================
#==================================================================
def mapCollection(stitchedCollection,referenceCollection,bamFileList,mappedFolder,output,refName):
'''
makes a table of factor density in a stitched locus and ranks table by number of loci stitched together
'''
print('FORMATTING TABLE')
loci = stitchedCollection.getLoci()
locusTable = [['REGION_ID','CHROM','START','STOP','NUM_LOCI','CONSTITUENT_SIZE']]
lociLenList = []
#strip out any that are in chrY
for locus in list(loci):
if locus.chr() == 'chrY':
loci.remove(locus)
for locus in loci:
#numLociList.append(int(stitchLocus.ID().split('_')[1]))
lociLenList.append(locus.len())
#numOrder = order(numLociList,decreasing=True)
lenOrder = ROSE_utils.order(lociLenList,decreasing=True)
ticker = 0
for i in lenOrder:
ticker+=1
if ticker%1000 ==0:
print(ticker)
locus = loci[i]
#First get the size of the enriched regions within the stitched locus
refEnrichSize = 0
refOverlappingLoci = referenceCollection.getOverlap(locus,'both')
for refLocus in refOverlappingLoci:
refEnrichSize+=refLocus.len()
try:
stitchCount = int(locus.ID().split('_')[0])
except ValueError:
stitchCount = 1
locusTable.append([locus.ID(),locus.chr(),locus.start(),locus.end(),stitchCount,refEnrichSize])
print('GETTING MAPPED DATA')
for bamFile in bamFileList:
bamFileName = bamFile.split('/')[-1]
print('GETTING MAPPING DATA FOR %s' % bamFile)
#assumes standard convention for naming enriched region gffs
#opening up the mapped GFF
print('OPENING %s%s_%s_MAPPED.gff' % (mappedFolder,refName,bamFileName))
mappedGFF =ROSE_utils.parseTable('%s%s_%s_MAPPED.gff' % (mappedFolder,refName,bamFileName),'\t')
signalDict = defaultdict(float)
print('MAKING SIGNAL DICT FOR %s' % (bamFile))
mappedLoci = []
for line in mappedGFF[1:]:
chrom = line[1].split('(')[0]
start = int(line[1].split(':')[-1].split('-')[0])
end = int(line[1].split(':')[-1].split('-')[1])
mappedLoci.append(ROSE_utils.Locus(chrom,start,end,'.',line[0]))
try:
signalDict[line[0]] = float(line[2])*(abs(end-start))
except ValueError:
print('WARNING NO SIGNAL FOR LINE:')
print(line)
continue
mappedCollection = ROSE_utils.LocusCollection(mappedLoci,500)
locusTable[0].append(bamFileName)
for i in range(1,len(locusTable)):
signal=0.0
line = locusTable[i]
lineLocus = ROSE_utils.Locus(line[1],line[2],line[3],'.')
overlappingRegions = mappedCollection.getOverlap(lineLocus,sense='both')
for region in overlappingRegions:
signal+= signalDict[region.ID()]
locusTable[i].append(signal)
ROSE_utils.unParseTable(locusTable,output,'\t')
#==================================================================
#=========================MAIN METHOD==============================
#==================================================================
def main():
'''
main run call
'''
debug = False
from optparse import OptionParser
usage = "usage: %prog [options] -g [GENOME] -i [INPUT_REGION_GFF] -r [RANKBY_BAM_FILE] -o [OUTPUT_FOLDER] [OPTIONAL_FLAGS]"
parser = OptionParser(usage = usage)
#required flags
parser.add_option("-i","--i", dest="input",nargs = 1, default=None,
help = "Enter a .gff or .bed file of binding sites used to make enhancers")
parser.add_option("-r","--rankby", dest="rankby",nargs = 1, default=None,
help = "bamfile to rank enhancer by")
parser.add_option("-o","--out", dest="out",nargs = 1, default=None,
help = "Enter an output folder")
parser.add_option("-g","--genome", dest="genome",nargs = 1, default=None,
help = "Enter the genome build (MM9,MM8,HG18,HG19)")
#optional flags
parser.add_option("-b","--bams", dest="bams",nargs = 1, default=None,
help = "Enter a comma separated list of additional bam files to map to")
parser.add_option("-c","--control", dest="control",nargs = 1, default=None,
help = "bamfile to rank enhancer by")
parser.add_option("-s","--stitch", dest="stitch",nargs = 1, default=12500,
help = "Enter a max linking distance for stitching")
parser.add_option("-t","--tss", dest="tss",nargs = 1, default=0,
help = "Enter a distance from TSS to exclude. 0 = no TSS exclusion")
#RETRIEVING FLAGS
(options,args) = parser.parse_args()
if not options.input or not options.rankby or not options.out or not options.genome:
print('hi there')
parser.print_help()
exit()
#making the out folder if it doesn't exist
outFolder = ROSE_utils.formatFolder(options.out,True)
#figuring out folder schema
gffFolder = ROSE_utils.formatFolder(outFolder+'gff/',True)
mappedFolder = ROSE_utils.formatFolder(outFolder+ 'mappedGFF/',True)
#GETTING INPUT FILE
if options.input.split('.')[-1] == 'bed':
#CONVERTING A BED TO GFF
inputGFFName = options.input.split('/')[-1][0:-4]
inputGFFFile = '%s%s.gff' % (gffFolder,inputGFFName)
ROSE_utils.bedToGFF(options.input,inputGFFFile)
elif options.input.split('.')[-1] =='gff':
#COPY THE INPUT GFF TO THE GFF FOLDER
inputGFFFile = options.input
os.system('cp %s %s' % (inputGFFFile,gffFolder))
else:
print('WARNING: INPUT FILE DOES NOT END IN .gff or .bed. ASSUMING .gff FILE FORMAT')
#COPY THE INPUT GFF TO THE GFF FOLDER
inputGFFFile = options.input
os.system('cp %s %s' % (inputGFFFile,gffFolder))
#GETTING THE LIST OF BAMFILES TO PROCESS
if options.control:
bamFileList = [options.rankby,options.control]
else:
bamFileList = [options.rankby]
if options.bams:
bamFileList += options.bams.split(',')
bamFileLIst = ROSE_utils.uniquify(bamFileList)
#optional args
#Stitch parameter
stitchWindow = int(options.stitch)
#tss options
tssWindow = int(options.tss)
if tssWindow != 0:
removeTSS = True
else:
removeTSS = False
#GETTING THE BOUND REGION FILE USED TO DEFINE ENHANCERS
print('USING %s AS THE INPUT GFF' % (inputGFFFile))
inputName = inputGFFFile.split('/')[-1].split('.')[0]
#GETTING THE GENOME
genome = options.genome
print('USING %s AS THE GENOME' % genome)
#GETTING THE CORRECT ANNOT FILE
cwd = os.getcwd()
genomeDict = {
'HG18':'%s/annotation/hg18_refseq.ucsc' % (cwd),
'MM9': '%s/annotation/mm9_refseq.ucsc' % (cwd),
'HG19':'%s/annotation/hg19_refseq.ucsc' % (cwd),
'MM8': '%s/annotation/mm8_refseq.ucsc' % (cwd),
'MM10':'%s/annotation/mm10_refseq.ucsc' % (cwd),
}
annotFile = genomeDict[upper(genome)]
#MAKING THE START DICT
print('MAKING START DICT')
startDict = ROSE_utils.makeStartDict(annotFile)
#LOADING IN THE BOUND REGION REFERENCE COLLECTION
print('LOADING IN GFF REGIONS')
referenceCollection = ROSE_utils.gffToLocusCollection(inputGFFFile)
#NOW STITCH REGIONS
print('STITCHING REGIONS TOGETHER')
stitchedCollection,debugOutput = regionStitching(inputGFFFile,stitchWindow,tssWindow,annotFile,removeTSS)
#NOW MAKE A STITCHED COLLECTION GFF
print('MAKING GFF FROM STITCHED COLLECTION')
stitchedGFF=ROSE_utils.locusCollectionToGFF(stitchedCollection)
if not removeTSS:
stitchedGFFFile = '%s%s_%sKB_STITCHED.gff' % (gffFolder,inputName,stitchWindow/1000)
stitchedGFFName = '%s_%sKB_STITCHED' % (inputName,stitchWindow/1000)
debugOutFile = '%s%s_%sKB_STITCHED.debug' % (gffFolder,inputName,stitchWindow/1000)
else:
stitchedGFFFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.gff' % (gffFolder,inputName,stitchWindow/1000)
stitchedGFFName = '%s_%sKB_STITCHED_TSS_DISTAL' % (inputName,stitchWindow/1000)
debugOutFile = '%s%s_%sKB_STITCHED_TSS_DISTAL.debug' % (gffFolder,inputName,stitchWindow/1000)
#WRITING DEBUG OUTPUT TO DISK
if debug:
print('WRITING DEBUG OUTPUT TO DISK AS %s' % (debugOutFile))
ROSE_utils.unParseTable(debugOutput,debugOutFile,'\t')
#WRITE THE GFF TO DISK
print('WRITING STITCHED GFF TO DISK AS %s' % (stitchedGFFFile))
ROSE_utils.unParseTable(stitchedGFF,stitchedGFFFile,'\t')
#SETTING UP THE OVERALL OUTPUT FILE
outputFile1 = outFolder + stitchedGFFName + '_ENHANCER_REGION_MAP.txt'
print('OUTPUT WILL BE WRITTEN TO %s' % (outputFile1))
#MAPPING TO THE NON STITCHED (ORIGINAL GFF)
#MAPPING TO THE STITCHED GFF
# bin for bam mapping
nBin =1
#IMPORTANT
#CHANGE cmd1 and cmd2 TO PARALLELIZE OUTPUT FOR BATCH SUBMISSION
#e.g. if using LSF cmd1 = "bsub python bamToGFF.py -f 1 -e 200 -r -m %s -b %s -i %s -o %s" % (nBin,bamFile,stitchedGFFFile,mappedOut1)
for bamFile in bamFileList:
bamFileName = bamFile.split('/')[-1]
#MAPPING TO THE STITCHED GFF
mappedOut1 ='%s%s_%s_MAPPED.gff' % (mappedFolder,stitchedGFFName,bamFileName)
#WILL TRY TO RUN AS A BACKGROUND PROCESS. BATCH SUBMIT THIS LINE TO IMPROVE SPEED
cmd1 = "python ROSE_bamToGFF_turbo.py -e 200 -r -m %s -b %s -i %s -o %s &" % (nBin,bamFile,stitchedGFFFile,mappedOut1)
print(cmd1)
os.system(cmd1)
#MAPPING TO THE ORIGINAL GFF
mappedOut2 ='%s%s_%s_MAPPED.gff' % (mappedFolder,inputName,bamFileName)
#WILL TRY TO RUN AS A BACKGROUND PROCESS. BATCH SUBMIT THIS LINE TO IMPROVE SPEED
cmd2 = "python ROSE_bamToGFF_turbo.py 1 -e 200 -r -m %s -b %s -i %s -o %s &" % (nBin,bamFile,inputGFFFile,mappedOut2)
print(cmd2)
os.system(cmd2)
print('PAUSING TO MAP')
time.sleep(10)
#CHECK FOR MAPPING OUTPUT
outputDone = False
ticker = 0
print('WAITING FOR MAPPING TO COMPLETE. ELAPSED TIME (MIN):')
while not outputDone:
'''
check every 1 minutes for completed output
'''
outputDone = True
if ticker%6 == 0:
print(ticker*5)
ticker +=1
#CHANGE THIS PARAMETER TO ALLOW MORE TIME TO MAP
if ticker == 120:
print('ERROR: OPERATION TIME OUT. MAPPING OUTPUT NOT DETECTED AFTER 2 HOURS')
exit()
break
for bamFile in bamFileList:
#GET THE MAPPED OUTPUT NAMES HERE FROM MAPPING OF EACH BAMFILE
bamFileName = bamFile.split('/')[-1]
mappedOut1 ='%s%s_%s_MAPPED.gff' % (mappedFolder,stitchedGFFName,bamFileName)
try:
mapFile = open(mappedOut1,'r')
mapFile.close()
except IOError:
outputDone = False
mappedOut2 ='%s%s_%s_MAPPED.gff' % (mappedFolder,inputName,bamFileName)
try:
mapFile = open(mappedOut2,'r')
mapFile.close()
except IOError:
outputDone = False
if outputDone == True:
break
time.sleep(60)
print('MAPPING TOOK %s MINUTES' % (ticker))
print('BAM MAPPING COMPLETED NOW MAPPING DATA TO REGIONS')
#CALCULATE DENSITY BY REGION
mapCollection(stitchedCollection,referenceCollection,bamFileList,mappedFolder,outputFile1,refName = stitchedGFFName)
time.sleep(10)
print('CALLING AND PLOTTING SUPER-ENHANCERS')
if options.control:
rankbyName = options.rankby.split('/')[-1]
controlName = options.control.split('/')[-1]
cmd = 'R --no-save %s %s %s %s < ROSE_callSuper.R' % (outFolder,outputFile1,inputName,controlName)
else:
rankbyName = options.rankby.split('/')[-1]
controlName = 'NONE'
cmd = 'R --no-save %s %s %s %s < ROSE_callSuper.R' % (outFolder,outputFile1,inputName,controlName)
print(cmd)
os.system(cmd)
#calling the gene mapper
time.sleep(20)
superTableFile = "%s_SuperEnhancers.table.txt" % (inputName)
cmd = "python ROSE_geneMapper.py -g %s -i %s%s" % (genome,outFolder,superTableFile)
os.system(cmd)
if __name__ == "__main__":
main()