-
Notifications
You must be signed in to change notification settings - Fork 3
/
util.py
392 lines (352 loc) · 11.1 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
"""
Useful functions for DEF/LEF parsers.
Author: Tri Minh Cao
Email: tricao@utdallas.edu
Date: August 2016
"""
SCALE = 2000
import matplotlib.pyplot as plt
import numpy as np
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
def str_to_list(s):
"""
Function to turn a string separated by space into list of words
:param s: input string
:return: a list of words
"""
result = s.split()
# check if the last word is ';' and remove it
#if len(result) >= 1:
# if result[len(result) - 1] == ";":
# result.pop()
return result
def scalePts(pts, alpha):
"""
scale a list of points
:return:
"""
scaled = []
for pt in pts:
scaled_pt = [alpha*pt[0], alpha*pt[1]]
scaled.append(scaled_pt)
return scaled
def rect_to_polygon(rect_pts):
"""
Convert the rect point list into polygon point list (for easy plotting)
:param pts:
:return:
"""
poly_pt = []
pt1 = list(rect_pts[0])
poly_pt.append(pt1)
pt2 = [rect_pts[0][0], rect_pts[1][1]]
poly_pt.append(pt2)
pt3 = list(rect_pts[1])
poly_pt.append(pt3)
pt4 = [rect_pts[1][0], rect_pts[0][1]]
poly_pt.append(pt4)
return poly_pt
def split_parentheses(info):
"""
make all strings inside parentheses a list
:param s: a list of strings (called info)
:return: info list without parentheses
"""
# if we see the "(" sign, then we start adding stuff to a temp list
# in case of ")" sign, we append the temp list to the new_info list
# otherwise, just add the string to the new_info list
new_info = []
make_list = False
current_list = []
for idx in range(len(info)):
if info[idx] == "(":
make_list = True
elif info[idx] == ")":
make_list = False
new_info.append(current_list)
current_list = []
else:
if make_list:
current_list.append(info[idx])
else:
new_info.append(info[idx])
return new_info
def split_plus(line):
"""
Split a line according to the + (plus) sign.
:param line:
:return:
"""
new_line = line.split("+")
return new_line
def split_space(line):
"""
Split a line according to space.
:param line:
:return:
"""
new_line = line.split()
return new_line
def draw_obs(obs, color):
"""
Helper method to draw a OBS object
:return: void
"""
# process each Layer
for layer in obs.info["LAYER"]:
for shape in layer.shapes:
scaled_pts = scalePts(shape.points, SCALE)
if (shape.type == "RECT"):
scaled_pts = rect_to_polygon(scaled_pts)
draw_shape = plt.Polygon(scaled_pts, closed=True, fill=True,
color=color)
plt.gca().add_patch(draw_shape)
def draw_port(port, color):
"""
Helper method to draw a PORT object
:return: void
"""
# process each Layer
for layer in port.info["LAYER"]:
for shape in layer.shapes:
scaled_pts = scalePts(shape.points, SCALE)
if (shape.type == "RECT"):
scaled_pts = rect_to_polygon(scaled_pts)
#print (scaled_pts)
draw_shape = plt.Polygon(scaled_pts, closed=True, fill=True,
color=color)
plt.gca().add_patch(draw_shape)
def draw_pin(pin):
"""
function to draw a PIN object
:param pin: a pin object
:return: void
"""
# chosen color of the PIN in the sketch
color = "blue"
pin_name = pin.name.lower()
if pin_name == "vdd" or pin_name == "gnd":
color = "blue"
else:
color = "red"
draw_port(pin.info["PORT"], color)
def draw_macro(macro):
"""
function to draw a Macro (cell) object
:param macro: a Macro object
:return: void
"""
# draw OBS (if it exists)
if "OBS" in macro.info:
draw_obs(macro.info["OBS"], "blue")
# draw each PIN
for pin in macro.info["PIN"]:
draw_pin(pin)
def compare_metal(metal_a, metal_b):
"""
Compare metal layers
:param metal_a: the first metal layer description
:param metal_b: the second metal layer description
:return:
"""
if metal_a == "poly":
if metal_b == "poly":
return 0
else:
return -1
else:
if metal_b == "poly":
return 1
else:
metal_a_num = get_metal_num(metal_a)
metal_b_num = get_metal_num(metal_b)
return (metal_a_num - metal_b_num)
def get_metal_num(metal):
"""
Get mental layer number from a string, such as "metal1" or "metal10"
:param metal: string that describes the metal layer
:return: metal number
"""
len_metal = len("metal")
parse_num = ""
for idx in range(len_metal, len(metal)):
parse_num += metal[idx]
return int(parse_num)
def inside_area(location, corners):
"""
Check if the location is inside an area.
:param location: location
:param corners: corner points of the rectangle area.
:return:
"""
x1 = corners[0][0]
x2 = corners[1][0]
y1 = corners[0][1]
y2 = corners[1][1]
return (location[0] > x1 and location[0] < x2
and location[1] > y1 and location[1] < y2)
def relocate_area(left_pt, corners):
"""
Relocate the corners based on the new bottom left point
:param left_pt:
:param corners:
:return:
"""
x = left_pt[0]
y = left_pt[1]
new_corners = []
for each in corners:
new_pt = [each[0] + x, each[1] + y]
new_corners.append(new_pt)
return new_corners
def macro_and_via1(def_info, via_type):
"""
Method to get macros/cells info and via1 information.
:param def_info: information from a DEF file
:param via_type: the name of the via type, such as "via1" or "M2_M1_via"
:return: a macro dictionary that contains via info
"""
result_dict = {}
# add components to the dictionary
for each_comp in def_info.components.comps:
result_dict[each_comp.name] = {}
result_dict[each_comp.name]["MACRO"] = each_comp.macro
# process the nets
for net in def_info.nets.nets:
for route in net.routed:
if route.end_via != None:
# check for the via type of the end_via
if route.end_via[:len(via_type)] == via_type:
via_loc = route.end_via_loc
via_name = route.end_via
via_info = (via_loc, via_name)
# add the via to the component dict
for each_comp in net.comp_pin:
comp_name = each_comp[0]
pin_name = each_comp[1]
if comp_name in result_dict:
if pin_name in result_dict[comp_name]:
result_dict[comp_name][pin_name].append(via_info)
else:
result_dict[comp_name][pin_name] = [via_info]
#print (result_dict)
return result_dict
def predict_score(predicts, actuals):
"""
Find the number of correct cell predictions.
:param predicts: a list of predictions.
:param actuals: a list of actual cells.
:return: # correct predictions, # cells
"""
len_preds = len(predicts)
len_actuals = len(actuals)
shorter_len = min(len_preds, len_actuals)
gap_predict = 0
gap_actual = 0
num_correct = 0
# print (shorter_len)
for i in range(shorter_len):
# print (i)
# print (gap_predict)
# print (gap_actual)
# print ()
if predicts[i + gap_predict] == actuals[i + gap_actual]:
num_correct += 1
else:
if len_preds < len_actuals:
gap_actual += 1
len_preds += 1
elif len_preds > len_actuals:
gap_predict += 1
len_actuals += 1
return num_correct, len(actuals)
def get_all_vias(def_info, via_type):
"""
method to get all vias of the via_type and put them in a list
:param def_info: DEF data
:param via_type: via type
:return: a list of all vias
"""
vias = []
# process the nets
for net in def_info.nets.nets:
for route in net.routed:
if route.end_via != None:
# check for the via type of the end_via
if route.end_via[:len(via_type)] == via_type:
via_loc = route.end_via_loc
via_name = route.end_via
default_via_type = -1 # 0 = input, 1 = output
via_info = [via_loc, via_name, net.name, default_via_type]
# add a via to the vias list
vias.append(via_info)
#print (result_dict)
return vias
def sort_vias_by_row(layout_area, row_height, vias):
"""
Sort the vias by row
:param layout_area: a list [x, y] that stores the area of the layout
:param vias: a list of vias that need to be sorted
:return: a list of rows, each containing a list of vias in that row.
"""
num_rows = layout_area[1] // row_height + 1
rows = []
for i in range(num_rows):
rows.append([])
for via in vias:
via_y = via[0][1]
row_dest = via_y // row_height
rows[row_dest].append(via)
# sort vias in each row based on x-coordinate
for each_row in rows:
each_row.sort(key = lambda x: x[0][0])
return rows
def randomize(dataset, labels):
permutation = np.random.permutation(labels.shape[0])
shuffled_dataset = dataset[permutation, :]
shuffled_labels = labels[permutation]
return shuffled_dataset, shuffled_labels
def group_via(via_list, max_number, max_distance):
"""
Method to group the vias together to check if they belong to a cell.
:param via_list: a list of all vias.
:return: a list of groups of vias.
"""
groups = []
length = len(via_list)
for i in range(length):
# one_group = [via_list[i]]
curr_via = via_list[i]
curr_list = []
for j in range(2, max_number + 1):
if i + j - 1 < length:
right_via = via_list[i + j - 1]
dist = right_via[0][0] - curr_via[0][0]
if dist < max_distance:
curr_list.append(via_list[i:i+j])
# only add via group list that is not empty
if len(curr_list) > 0:
groups.append(curr_list)
return groups
def sorted_components(layout_area, row_height, comps):
"""
Sort the components by row
:param layout_area: a list [x, y] that stores the area of the layout
:param comps: a list of components that need to be sorted
:return: a list of rows, each containing a list of components in that row.
"""
num_rows = layout_area[1] // row_height + 1
rows = []
for i in range(num_rows):
rows.append([])
for comp in comps:
comp_y = comp.placed[1]
row_dest = comp_y // row_height
rows[row_dest].append(comp)
# sort vias in each row based on x-coordinate
for each_row in rows:
each_row.sort(key = lambda x: x.placed[0])
return rows