-
Notifications
You must be signed in to change notification settings - Fork 41
/
TCGA_expression.Rmd
202 lines (173 loc) · 7.67 KB
/
TCGA_expression.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
title: "Expression of selected genes across all TCGA cancers"
author: "Mikhail Dozmorov"
date: "`r Sys.Date()`"
output:
pdf_document:
toc: yes
html_document:
theme: united
toc: yes
---
```{r setup, echo=FALSE, message=FALSE, warning=FALSE}
# Set up the environment
library(knitr)
opts_chunk$set(cache.path='cache/', fig.path='img/', cache=F, tidy=T, fig.keep='high', echo=F, dpi=100, warnings=F, message=F, comment=NA, warning=F, results='as.is', fig.width = 10, fig.height = 6) #out.width=700,
library(pander)
panderOptions('table.split.table', Inf)
set.seed(1)
library(dplyr)
options(stringsAsFactors = FALSE)
```
## Libraries
```{r}
library(openxlsx)
library(dplyr)
library(ggplot2)
```
```{r functions}
# A function to load TCGA data, from remote repository, or a local R object
load_data <- function(disease = cancer, data.type = data.type, type = type, data_dir = data_dir, force_reload = FALSE) {
FILE = paste0(data_dir, "/mtx_", disease, "_", data.type, "_", type, ".rda") # R object with data
if (all(file.exists(FILE), !(force_reload))) {
# If the data has been previously saved, load it
load(file = FILE)
} else {
# If no saved data exists, get it from the remote source
mtx <- getTCGA(disease = disease, data.type = data.type, type = type, clinical = TRUE)
save(file = FILE, list = c("mtx")) # Save it
}
return(mtx)
}
# A wrapper function to perform all functional enrichment analyses.
# Helper function to save non-empty results
save_res <- function(res, fileName = fileName, wb = wb, sheetName = "KEGG") {
if (nrow(res) > 0) {
openxlsx::addWorksheet(wb = wb, sheetName = sheetName)
openxlsx::writeData(wb, res, sheet = sheetName)
openxlsx::saveWorkbook(wb, fileName, overwrite = TRUE)
}
}
# A wrapper to save the results
save_enrichr <- function(up.genes = up.genes, dn.genes = NULL, databases = "KEGG_2016", fdr.cutoff = 1, fileNameOut = NULL, wb = NULL) {
print(paste("Running", databases, "analysis", sep = " "))
if (is.null(dn.genes)) {
res.kegg <- enrichGeneList(up.genes, databases = databases, fdr.cutoff = 1)
} else {
res.kegg <- enrichFullGeneList(up.genes, dn.genes, databases = databases, fdr.cutoff = 1)
}
res.kegg$pval <- formatC(res.kegg$pval, digits = 3, format = "e")
res.kegg$qval <- formatC(res.kegg$qval, digits = 3, format = "e")
if (!is.null(fileNameOut)) {
if (nchar(databases) > 30) databases <- paste0(substr(databases, 1, 20), "_", substr(databases, nchar(databases) - 8, nchar(databases))) # If a database is longer that 30 characters, keep first 20 and last 10 characters
save_res(res.kegg, fileNameOut, wb = wb, sheetName = databases)
}
# Pause for a few seconds
pause_sec <- round(runif(1, min = 1, max = 10))
Sys.sleep(pause_sec)
return(res.kegg)
}
## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).
## data: a data frame.
## measurevar: the name of a column that contains the variable to be summariezed
## groupvars: a vector containing names of columns that contain grouping variables
## na.rm: a boolean that indicates whether to ignore NA's
## conf.interval: the percent range of the confidence interval (default is 95%)
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE,
conf.interval=.95, .drop=TRUE) {
library(plyr)
# New version of length which can handle NA's: if na.rm==T, don't count them
length2 <- function (x, na.rm=FALSE) {
if (na.rm) sum(!is.na(x))
else length(x)
}
# This does the summary. For each group's data frame, return a vector with
# N, mean, and sd
datac <- ddply(data, groupvars, .drop=.drop,
.fun = function(xx, col) {
c(N = length2(xx[[col]], na.rm=na.rm),
mean = mean (xx[[col]], na.rm=na.rm),
sd = sd (xx[[col]], na.rm=na.rm)
)
},
measurevar
)
# Rename the "mean" column
datac <- rename(datac, c("mean" = measurevar))
datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean
# Confidence interval multiplier for standard error
# Calculate t-statistic for confidence interval:
# e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
ciMult <- qt(conf.interval/2 + .5, datac$N-1)
datac$ci <- datac$se * ciMult
return(datac)
}
```
## Settings
```{r}
system("mkdir -p data")
# system("mkdir -p results")
# Path where the downloaded data is stored
data_dir = "/Users/mdozmorov/Documents/Data/GenomeRunner/TCGAsurvival/data" # Mac
# data_dir = "F:/Data/GenomeRunner/TCGAsurvival/data" # Windows
# Selected genes
selected_genes <- c("MIA", "FOXA1")
data.type = "RNASeq2"; type = ""
# All cancers with RNASeq2 data
cancer_RNASeq2 = c("ACC", "BLCA", "BRCA" , "CESC", "CHOL", "COAD", "COADREAD", "DLBC", "ESCA", "GBM", "GBMLGG", "HNSC", "KICH", "KIPAN", "KIRC", "KIRP", "LGG", "LIHC", "LUAD", "LUSC", "MESO", "OV", "PAAD", "PCPG", "PRAD", "READ", "SARC", "SKCM", "STAD", "TGCT", "THCA", "THYM", "UCEC", "UCS")
```
## Expression of selected genes across all TCGA cancers
Genes selected: `r paste(selected_genes, collapse = ", ")`
```{r expression}
# File name for pre-saved results
fileNameIn <- (paste0("data/", paste(selected_genes, collapse = "_"), "_coexpression_", data.type, "_", type, ".Rda"))
if (!file.exists(fileNameIn)) {
selected_genes_expr <- rbind() # data frame to rbind cancer-specific expression of selected genes
for (cancer in cancer_RNASeq2) {
all_exprs <- list() # List to store cancer-specific expression matrixes
# print(paste0("Processing cancer ", cancer))
# Prepare expression data
mtx <- load_data(disease = cancer, data.type = data.type, type = type, data_dir = data_dir, force_reload = FALSE)
expr <- mtx$merged.dat[ , 4:ncol(mtx$merged.dat)] %>% as.matrix
# Sanity check that genes are in the matrix
# colnames(expr)[(colnames(expr) %in% selected_genes)]
expr <- (expr + 1) %>% log2 %>% t
expr_selected <- expr[rownames(expr) %in% selected_genes, , drop = FALSE]
# The data in form of selected gene expression (columns), and a "cancer" label variable
selected_genes_expr <- rbind(selected_genes_expr, data.frame(t(expr_selected), cancer = rep(cancer, ncol(expr))))
}
save(selected_genes_expr, file = fileNameIn) # Select cancers
} else {
load(file = fileNameIn)
}
```
```{r plotting, fig.width=10, fig.height=3}
# Reshape the data
gdata <- reshape2::melt(selected_genes_expr)
# ggplot(gdata, aes(x = cancer, y = value, fill = variable)) + geom_boxplot()
# ggplot(gdata, aes(x = cancer, y = value, fill = variable)) + geom_bar(position=position_dodge(), stat = "summary", fun.y = "mean")
# http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/
gdata_summary <- summarySE(gdata, measurevar="value", groupvars=c("cancer", "variable"))
ggplot(gdata_summary, aes(x = cancer, y = value, fill = variable)) +
geom_bar(position=position_dodge(), stat="identity",
colour="black", # Use black outlines,
size=.3) + # Thinner lines
geom_errorbar(aes(ymin=value-se, ymax=value+se),
size=.3, # Thinner lines
width=.2,
position=position_dodge(.9)) +
xlab("Cancer type") +
ylab("log2 expression") +
scale_fill_hue(name="Gene", # Legend label, use darker colors
breaks=selected_genes,
labels=selected_genes) +
ggtitle("Expression of selected genes in all TCGA cancers") +
scale_y_continuous(breaks=0:20*4) +
theme_bw() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
```
Cancer abbreviations
```{r}
cancers <- openxlsx::read.xlsx("data.TCGA/TCGA_cancers.xlsx")
pander(cancers)
```