forked from agporto/ml-morph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
404 lines (335 loc) · 15.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#Part of the standard library
import xml.etree.ElementTree as ET
from xml.dom import minidom
import os
import csv
import re
import random
import shutil
import glob
#Not part of the standard library
import numpy as np
import pandas as pd
import cv2
import dlib
#Tools for using previously annotated datasets
def read_csv(input):
'''
This function reads a XY coordinate file (following the tpsDig coordinate system) containing several specimens(rows)
and any number of landmarks. It is generally assumed here that the file contains a header and no other
columns other than an id column (first column) and the X0 Y0 ...Xn Yn coordinates for n landmarks.It is also
assumed that the file contains no missing values.
Parameters:
input (str): The XY coordinate file (csv format)
Returns:
dict: dictionary containing two keys (im= image id, coords= array with 2D coordinates)
'''
csv_file = open(input, 'r')
csv =csv_file.read().splitlines()
csv_file.close()
im, coords_array = [], []
for i, ln in enumerate(csv):
if i > 0:
im.append(ln.split(',')[0])
coord_vec=ln.split(',')[1:]
coords_mat = np.reshape(coord_vec, (int(len(coord_vec)/2),2))
coords = np.array(coords_mat, dtype=float)
coords_array.append(coords)
return {'im': im, 'coords': coords_array}
def read_tps(input):
'''
This function reads a tps coordinate file containing several specimens and an arbitrary number of landmarks.
A single image file can contain as many specimens as wanted.
It is generally assumed here that all specimens were landmarked in the same order.It is also assumed that
the file contains no missing values.
Parameters:
input (str): The tps coordinate file
Returns:
dict: dictionary containing four keys
(lm= number of landmarks,im= image id, scl= scale, coords= array with 2D coordinates)
'''
tps_file = open(input, 'r')
tps = tps_file.read().splitlines()
tps_file.close()
lm, im, sc, coords_array = [], [], [], []
for i, ln in enumerate(tps):
if ln.startswith("LM"):
lm_num = int(ln.split('=')[1])
lm.append(lm_num)
coords_mat = []
for j in range(i + 1, i + 1 + lm_num):
coords_mat.append(tps[j].split(' '))
coords_mat = np.array(coords_mat, dtype=float)
coords_array.append(coords_mat)
if ln.startswith("IMAGE"):
im.append(ln.split('=')[1])
if ln.startswith("SCALE"):
sc.append(ln.split('=')[1])
return {'lm': lm, 'im': im, 'scl': sc, 'coords': coords_array}
#dlib xml tools
def add_part_element(bbox,num,sz):
'''
Internal function used by generate_dlib_xml. It creates a 'part' xml element containing the XY coordinates
of an arbitrary number of landmarks. Parts are nested within boxes.
Parameters:
bbox (array): XY coordinates for a specific landmark
num(int)=landmark id
sz (int)=the image file's height in pixels
Returns:
part (xml tag): xml element containing the 2D coordinates for a specific landmark id(num)
'''
part = ET.Element('part')
part.set('name',str(int(num)))
part.set('x',str(int(bbox[0])))
part.set('y',str(int(sz-bbox[1])))
return part
def add_bbox_element(bbox,sz,padding=0):
'''
Internal function used by generate_dlib_xml. It creates a 'bounding box' xml element containing the
four parameters that define the bounding box (top,left, width, height) based on the minimum and maximum XY
coordinates of its parts(i.e.,landmarks). An optional padding can be added to the bounding box.Boxes are
nested within images.
Parameters:
bbox (array): XY coordinates for all landmarks within a bounding box
sz (int)= the image file's height in pixels
padding(int)= optional parameter definining the amount of padding around the landmarks that should be
used to define a bounding box, in pixels (int).
Returns:
box (xml tag): xml element containing the parameters that define a bounding box and its corresponding parts
'''
box = ET.Element('box')
height = bbox[:,1].max()-bbox[:,1].min()+2*padding
width = bbox[:,0].max()-bbox[:,0].min()+2*padding
top = sz-bbox[:,1].max()-padding
if top < 1:
top =1
left = bbox[:,0].min()-padding
if left < 1:
left =1
box.set('top', str(int(top)))
box.set('left', str(int(left)))
box.set('width', str(int(width)))
box.set('height', str(int(height)))
for i in range(0,len(bbox)):
box.append(add_part_element(bbox[i,:],i,sz))
return box
def add_image_element(image, coords, sz, path):
'''
Internal function used by generate_dlib_xml. It creates a 'image' xml element containing the
image filename and its corresponding bounding boxes and parts.
Parameters:
image (str): image filename
coords (array)= XY coordinates for all landmarks within a bounding box
sz (int)= the image file's height in pixels
Returns:
image (xml tag): xml element containing the parameters that define each image (boxes+parts)
'''
image_e = ET.Element('image')
image_e.set('file', str(path))
image_e.append(add_bbox_element(coords,sz))
return image_e
def generate_dlib_xml(images,sizes,folder='train',out_file='output.xml'):
'''
Generates a dlib format xml file for training or testing of machine learning models.
Parameters:
images (dict): dictionary output by read_tps or read_csv functions
sizes (dict)= dictionary of image file sizes output by the split_train_test function
folder(str)= name of the folder containing the images
Returns:
None (file written to disk)
'''
root = ET.Element('dataset')
root.append(ET.Element('name'))
root.append(ET.Element('comment'))
images_e = ET.Element('images')
root.append(images_e)
for i in range(0,len(images['im'])):
name=os.path.splitext(images['im'][i])[0]+'.jpg'
path=os.path.join(folder,name)
if os.path.isfile(path) is True:
present_tags=[]
for img in images_e.findall('image'):
present_tags.append(img.get('file'))
if path in present_tags:
pos=present_tags.index(path)
images_e[pos].append(add_bbox_element(images['coords'][i],sizes[name][0]))
else:
images_e.append(add_image_element(name,images['coords'][i],sizes[name][0],path))
et = ET.ElementTree(root)
xmlstr = minidom.parseString(ET.tostring(et.getroot())).toprettyxml(indent=" ")
with open(out_file, "w") as f:
f.write(xmlstr)
#Directory preparation tools
def split_train_test(input_dir):
'''
Splits an image directory into 'train' and 'test' directories. The original image directory is preserved.
When creating the new directories, this function converts all image files to 'jpg'. The function returns
a dictionary containing the image dimensions in the 'train' and 'test' directories.
Parameters:
input_dir(str)=original image directory
Returns:
sizes (dict): dictionary containing the image dimensions in the 'train' and 'test' directories.
'''
# Listing the filenames.Folders must contain only image files (extension can vary).Hidden files are ignored
filenames = os.listdir(input_dir)
filenames = [os.path.join(input_dir, f) for f in filenames if not f.startswith('.')]
# Splitting the images into 'train' and 'test' directories (80/20 split)
random.seed(845)
filenames.sort()
random.shuffle(filenames)
split = int(0.8 * len(filenames))
train_set = filenames[:split]
test_set = filenames[split:]
filenames = {'train':train_set,
'test': test_set}
sizes={}
for split in ['train','test']:
sizes[split]={}
if not os.path.exists(split):
os.mkdir(split)
else:
print("Warning: the folder {} already exists. It's being replaced".format(split))
shutil.rmtree(split)
os.mkdir(split)
for filename in filenames[split]:
basename=os.path.basename(filename)
name=os.path.splitext(basename)[0] + '.jpg'
sizes[split][name]=image_prep(filename,name,split)
return sizes
def image_prep(file, name, dir_path):
'''
Internal function used by the split_train_test function. Reads the original image files and, while
converting them to jpg, gathers information on the original image dimensions.
Parameters:
file(str)=original path to the image file
name(str)=basename of the original image file
dir_path(str)= directory where the image file should be saved to
Returns:
file_sz(array): original image dimensions
'''
img = cv2.imread(file)
if img is None:
print('File {} was ignored'.format(file))
else:
file_sz= [img.shape[0],img.shape[1]]
cv2.imwrite(os.path.join(dir_path,name), img)
return file_sz
# Tools for predicting objects and shapes in new images
def predictions_to_xml(detector_name:str, predictor_name:str,dir='pred',upsample=0,threshold=0,ignore=None,out_file='output_prediction.xml'):
'''
Generates a dlib format xml file for model predictions. It uses previously trained models to
identify objects in images and to predict their shape.
Parameters:
detector_name (str): object detector filename
predictor_name (str): shape predictor filename
dir(str): (optional) name of the directory containing images to be predicted
upsample (int): (optional) number of times that an image should be upsampled (max=2 times)
treshold (float): (optional) confidence threshold. Objects detected with lower confidence than
the threshold are not output
ignore (list): list of landmarks that should be ignored (based on landmark numeric id)
out_file (str): name of the output file (xml format)
Returns:
None (out_file written to disk)
'''
predictor = dlib.shape_predictor(predictor_name)
detector = dlib.fhog_object_detector(detector_name)
root = ET.Element('dataset')
root.append(ET.Element('name'))
root.append(ET.Element('comment'))
images_e = ET.Element('images')
root.append(images_e)
for f in glob.glob(dir+"/*.jpg"):
path, file = os.path.split(f)
img = cv2.imread(f)
image_e = ET.Element('image')
image_e.set('file', str(f))
[boxes, confidences, detector_idxs] = dlib.fhog_object_detector.run(
detector, img, upsample_num_times=upsample, adjust_threshold=threshold)
for k, d in enumerate(boxes):
shape = predictor(img, d)
box = ET.Element('box')
box.set('top', str(int(d.top())))
box.set('left', str(int(d.left())))
box.set('width', str(int(d.right()-d.left())))
box.set('height', str(int(d.bottom()-d.top())))
for i in range(0,shape.num_parts):
if ignore is not None:
if i not in ignore:
part = ET.Element('part')
part.set('name',str(int(i)))
part.set('x',str(int(shape.part(i).x)))
part.set('y',str(int(shape.part(i).y)))
box.append(part)
else:
part = ET.Element('part')
part.set('name',str(int(i)))
part.set('x',str(int(shape.part(i).x)))
part.set('y',str(int(shape.part(i).y)))
box.append(part)
image_e.append(box)
images_e.append(image_e)
et = ET.ElementTree(root)
xmlstr = minidom.parseString(ET.tostring(et.getroot())).toprettyxml(indent=" ")
with open(out_file, "w") as f:
f.write(xmlstr)
#Importing to pandas tools
def natural_sort_XY(l):
'''
Internal function used by the dlib_xml_to_pandas. Performs the natural sorting of an array of XY
coordinate names.
Parameters:
l(array)=array to be sorted
Returns:
l(array): naturally sorted array
'''
convert = lambda text: int(text) if text.isdigit() else 0
alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key)
def dlib_xml_to_pandas(xml_file: str,parse=False):
'''
Imports dlib xml data into a pandas dataframe. An optional file parsing argument is present
for very specific applications. For most people, the parsing argument should remain as 'False'.
Parameters:
xml_file(str)=file to be imported (dlib xml format)
Returns:
df(dataframe): returns a pandas dataframe containing the data in the xml_file.
'''
tree=ET.parse(xml_file)
root=tree.getroot()
landmark_list=[]
for images in root:
for image in images:
for boxes in image:
box=boxes.attrib['top']\
+'_'+boxes.attrib['left']\
+'_'+boxes.attrib['width']\
+'_'+boxes.attrib['height']
for parts in boxes:
if parts.attrib['name'] is not None:
if parse is False:
data={'id':image.attrib['file'],
'box_id':box,
'box_top':float(boxes.attrib['top']),
'box_left':float(boxes.attrib['left']),
'box_width':float(boxes.attrib['width']),
'box_height':float(boxes.attrib['height']),
'X'+parts.attrib['name']:float(parts.attrib['x']),
'Y'+parts.attrib['name']:float(parts.attrib['y']) }
else:
data={'id':image.attrib['file'].replace('/','_').replace('x','').split('_')[1],
'side':image.attrib['file'].replace('/','_').replace('x','').split('_')[2],
'replicate':image.attrib['file'].replace('/','_').replace('x','').split('_')[3],
'voltage':image.attrib['file'].replace('/','_').replace('x','').split('_')[4],
'zoom':image.attrib['file'].replace('/','_').replace('x','').split('_')[5],
'box_id':box,
'box_top':float(boxes.attrib['top']),
'box_left':float(boxes.attrib['left']),
'box_width':float(boxes.attrib['width']),
'box_height':float(boxes.attrib['height']),
'X'+parts.attrib['name']:float(parts.attrib['x']),
'Y'+parts.attrib['name']:float(parts.attrib['y']) }
landmark_list.append(data)
dataset=pd.DataFrame(landmark_list)
df = dataset.groupby(['id', 'box_id'], sort=False).max()
df=df[natural_sort_XY(df)]
return df