-
Notifications
You must be signed in to change notification settings - Fork 0
/
vgg.py
87 lines (64 loc) · 2.66 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torchvision
class VGGInputNormalization(nn.Module):
def __init__(self, inplace=True):
super().__init__()
self.inplace = inplace
mean = np.array([0.485, 0.456, 0.406])
mean = mean[:, np.newaxis, np.newaxis]
std = np.array([0.229, 0.224, 0.225])
std = std[:, np.newaxis, np.newaxis]
self.register_buffer('mean', torch.tensor(mean))
self.register_buffer('std', torch.tensor(std))
def forward(self, tensor):
if self.inplace:
tensor /= 255.0
else:
tensor = tensor / 255.0
tensor = tensor.type('torch.cuda.FloatTensor') - \
self.mean.type('torch.cuda.FloatTensor')
tensor = tensor.type('torch.cuda.FloatTensor') / \
self.std.type('torch.cuda..FloatTensor')
return tensor
class VGG19BNNamedFeatures(nn.Sequential):
def __init__(self):
names = []
for block in range(5):
block_size = 2 if block < 2 else 4
for layer in range(block_size):
names.append(f'conv{block+1}_{layer+1}')
names.append(f'bn{block+1}_{layer+1}')
names.append(f'relu{block+1}_{layer+1}')
names.append(f'pool{block+1}')
vgg = torchvision.models.vgg19_bn(pretrained=True)
vgg_features = vgg.features
vgg.classifier = torch.nn.Sequential()
assert len(names) == len(vgg_features)
named_features = OrderedDict({'normalize': VGGInputNormalization()})
for name, feature in zip(names, vgg_features):
if isinstance(feature, nn.MaxPool2d):
feature.ceil_mode = True
named_features[name] = feature
super().__init__(named_features)
class VGG19NamedFeatures(torch.nn.Sequential):
def __init__(self):
names = []
for block in range(5):
block_size = 2 if block < 2 else 4
for layer in range(block_size):
names.append(f'conv{block+1}_{layer+1}')
names.append(f'relu{block+1}_{layer+1}')
names.append(f'pool{block+1}')
vgg = torchvision.models.vgg19(pretrained=True)
vgg_features = vgg.features
vgg.classifier = torch.nn.Sequential()
assert len(names) == len(vgg_features)
named_features = OrderedDict({'normalize': VGGInputNormalization()})
for name, feature in zip(names, vgg_features):
if isinstance(feature, nn.MaxPool2d):
feature.ceil_mode = True
named_features[name] = feature
super().__init__(named_features)