forked from Al3n70rn/HotMAPS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_hotspot_regions_struct.py
441 lines (350 loc) · 14.7 KB
/
find_hotspot_regions_struct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import Bio.PDB
import src.pdb_structure as pstruct
import src.utils as utils
import src.graph as graph
import scripts.get_hotspot_residues as get_hotspot_residues
import argparse
import csv
import itertools as it
import sys
# get logger
import logging
import os
logger = logging.getLogger(__name__) # module logger
def parse_arguments():
info = ('Uses BFS to connect hotspot residues into connected regions '
'within a structure.')
parser = argparse.ArgumentParser(description=info)
# program arguments
parser.add_argument('-i', '--input',
type=str, required=True,
help='Output file from hotspot.py which has p-values for residues')
parser.add_argument('-a', '--annotation-dir',
type=str, required=True,
help='Annotation directory from CRAVAT')
parser.add_argument('-p', '--pdb-info',
type=str, required=True,
help='PDB information file (contains paths to PDBs)')
parser.add_argument('-r', '--radius',
default=10.0,
type=float,
help='Sphere radius in angstroms for connecting link between two residues (Default: 10.0)')
parser.add_argument('-o', '--output',
default='output.txt',
type=str,
help='Output result file for hotspot regions')
parser.add_argument('-s', '--significance',
type=str, required=True,
help='File containing p-value thresholds for each tumour type')
# logging arguments
parser.add_argument('-ll', '--log-level',
type=str,
action='store',
default='',
help='Write a log file (--log-level=DEBUG for debug mode, '
'--log-level=INFO for info mode)')
parser.add_argument('-l', '--log',
type=str,
action='store',
default='',
help='Path to log file. (accepts "stdout")')
args = parser.parse_args()
# handle logging
if args.log_level or args.log:
if args.log:
log_file = args.log
else:
log_file = '' # auto-name the log file
else:
log_file = os.devnull
log_level = args.log_level
utils.start_logging(log_file=log_file,
log_level=log_level) # start logging
opts = vars(args)
return opts
def read_delim(path):
"""Read in tab delimited file."""
data = []
with open(path) as handle:
myreader = csv.reader(handle, delimiter='\t')
data = list(myreader)
return data
def read_residue_info(path):
"""Reads in the file containing residue p-values
"""
data = []
f = open(path)
header = f.readline()
header = header.strip()
header = header.split('\t')
struct_ix = header.index("Structure")
ttype_ix = header.index("Tumor Type")
model_ix = header.index("Model")
chain_ix = header.index("Chain")
res_ix = header.index("Mutation Residues")
pval_ix = header.index("Hotspot P-value")
data.append([header[struct_ix], header[ttype_ix], header[model_ix], header[chain_ix], header[res_ix], header[pval_ix]])
non_float_pvals = 0
missing_line_info = 0
for line in f:
line = line.strip()
line = line.split('\t')
# skip empty lines with no mutation info
if len(line) <= 2:
missing_line_info += 1
continue
models = line[model_ix].split(',')
chains = line[chain_ix].split(',')
residues = line[res_ix].split(',')
pvals = line[pval_ix].split(',')
for i in range(len(pvals)):
try:
float(pvals[i])
split_line = [line[struct_ix], line[ttype_ix], models[i], chains[i], residues[i], pvals[i]]
data.append(split_line)
except ValueError:
non_float_pvals += 1
logger.info("Number of non-float pvals = " + str(non_float_pvals))
logger.info("Number of lines with missing info = " + str(missing_line_info))
return data
def read_mupit_file(path, signif_res):
"""Reads in the mupit annotation file, but only the lines corresponding
to significant residues. This reduces memory usage by a lot.
Parameters
----------
path : str
path to mupit annotation file
signif_res :
significant residues
"""
data = []
signif_pdbs = set([k[0] for k in signif_res])
with open(path) as handle:
myreader = csv.reader(handle, delimiter='\t')
anot_header = next(myreader)
pdb_ix = anot_header.index('pdb_id')
gene_ix = anot_header.index('HUGO symbol')
tx_ix = anot_header.index('Reference Transcript')
res_ix = anot_header.index('Reference Codon Position')
chain_ix = anot_header.index('chain')
pdb_res_ix = anot_header.index('residue')
# read in data for significant lines
skip_ct = 0
for l in myreader:
# skip lines that don't have correct annotation
if len(l) < res_ix:
skip_ct += 1
continue
try:
pdb_info = (l[pdb_ix], l[chain_ix], int(l[pdb_res_ix]))
except:
continue
# add only if in significant structure
if pdb_info[0] in signif_pdbs:
data.append(l)
logger.info('Skipped {0} lines'.format(skip_ct))
# record the position of the columns in the header
column_dict = {
'pdb': pdb_ix,
'chain': chain_ix,
'pdb_res': pdb_res_ix,
'gene' : gene_ix,
'tx': tx_ix,
'res': res_ix
}
return data, column_dict
def update_graph(struct2graph, all_cogs, signif_struct_info, non_signif_struct_info, struct, radius):
"""Updates the residue neighbor graph based on the current structure.
Residues are linked by edges if they are within the provided radius
and are on the same gene.
Parameters
----------
gene2graph : dict
dictionary with genes as keys pointing to significant hotspot residue
neighbor graph
signif_struct_info : dict
identifies which residues are significant hotspots
struct : Bio.PDB structure
structure under consideration when populating the graph
radius : float
radius deemed close enough to add an edge between two residues
Returns
-------
gene2graph : dict
updated graph based on the provided structure
"""
# get which residues are significant
signif_pdb_pos = signif_struct_info.keys()
non_signif_pdb_pos = non_signif_struct_info.keys()
possible_signif_res = set(signif_pdb_pos)
possible_non_signif_res = set(non_signif_pdb_pos)
# find neighbor residues
signif_cogs = {k: all_cogs[k] for k in all_cogs
if (k[2], k[3][1]) in signif_pdb_pos}
neighbors = pstruct.find_neighbors(signif_cogs, radius)
all_neighbors = pstruct.find_neighbors_for(all_cogs, signif_cogs.keys(), radius)
#struct_info = struct_chain[pdb_id]
# add edge if residues are neighbors
avail_models = [m.id for m in struct]
signif_res_neighbors = {}
for s in signif_pdb_pos:
tmp_chain, tmp_res = s
cur_res = signif_struct_info[s]
cur_pdb = cur_res[0]
# update struct2graph
struct2graph.setdefault(cur_pdb, {})
for m in avail_models:
cur_res = (m, tmp_chain, int(tmp_res))
struct2graph[cur_pdb].setdefault(cur_res, set())
try:
# get neighbors
tmp_id = struct[m][tmp_chain][int(tmp_res)].get_full_id()
tmp_neighbors = set([(n[2], n[3][1]) for n in neighbors[tmp_id]])
all_tmp_neighbors = set([(n[2], n[3][1]) for n in all_neighbors[tmp_id]])
signif_neighbors = set(tmp_neighbors & possible_signif_res)
signif_neighbors_struct = set([(m, o[0], o[1]) for o in signif_neighbors])
non_signif_neighbors = set(all_tmp_neighbors & possible_non_signif_res)
non_signif_neighbors_struct = set([(m, o[0], o[1]) for o in non_signif_neighbors])
signif_res_neighbors[cur_res] = non_signif_neighbors_struct
# add result to the graphs
struct2graph[cur_pdb][cur_res] = struct2graph[cur_pdb][cur_res] | signif_neighbors_struct
except KeyError:
# skip deleted chains, or models without a chain
# be careful this catches all keyerrors
print(cur_pdb)
pass
return struct2graph, signif_res_neighbors
def retrieve_components(graph_dict, tumor_type, all_cogs,
radius, signif_res_neighbours):
"""Get the connected components and format the output."""
#inv_signif_struct_info = {v: k for k, v in signif_struct_info.items()}
ttype_output = []
#neighbours = pstruct.find_neighbors(all_cogs, radius)
for mystruct in graph_dict:
g = graph_dict[mystruct]
components = graph.connected_components(g)
added_components = components
"""
added_components = []
for cluster in components:
neighbours_in_cluster = set()
for res in cluster:
if res in signif_res_neighbours:
neighbours_in_cluster |= signif_res_neighbours[res]
added_components.append(cluster | neighbours_in_cluster)
"""
#print added_components
tmp = [mystruct, tumor_type]
for component in added_components:
format_str = ';'.join('{0}:{1}:{2}'.format(n[0], n[1], n[2]) for n in component)
tmp.append(format_str)
ttype_output.append(tmp)
return ttype_output
def read_thresholds(path):
"""
Read the p-value thresholds for each tumour type
"""
thresholds = {}
with open(path) as f:
for line in f:
line = line.strip()
line = line.split('\t')
tumour = line[0]
threshold = float(line[1])
thresholds[tumour] = threshold
return thresholds
def main(opts):
# read in the PDB info file
pdb_info = utils.read_pdb_info(opts['pdb_info'])
# use external module to separate out the residues in the hotspot.py output
# onto separate lines
mtc = read_residue_info(opts['input'])
pval_thresholds = read_thresholds(opts['significance'])
# read in multiple testing file
#mtc = read_delim(opts['multiple_testing'])
header = mtc.pop(0)
ttype_ix = header.index('Tumor Type')
struct_ix = header.index('Structure')
model_ix = header.index('Model')
chain_ix = header.index('Chain')
res_ix = header.index('Mutation Residues')
pval_ix = header.index('Hotspot P-value')
# iterate through each tumor type
output = []
uniq_ttypes = set(m[ttype_ix] for m in mtc)
for ttype in uniq_ttypes:
logger.info('Working on {0} . . .'.format(ttype))
# if there is no pval threshold, nothing is significant
if not ttype in pval_thresholds:
continue
# get the significant residues for the tumor type
mtc_ttype = [m for m in mtc
if (m[ttype_ix] == ttype) and (float(m[pval_ix])<=pval_thresholds[ttype])]
# ANY EQUIVALENT COPY THING FOR STRUCTURES?
# significant_res = set([(m[gene_ix], m[tx_ix], int(m[res_ix]))
# for m in mtc_ttype])
#significant_res = list(mtc_ttype)
significant_res = [(m[struct_ix], m[chain_ix], int(m[res_ix]))
for m in mtc_ttype]
# read annotation file
# get full ttype string from directory
for ann_file in os.listdir(opts['annotation_dir']):
prefix = 'mupit_mutations_' + ttype
if ann_file.startswith(prefix):
ttype = ann_file.split('mupit_mutations_')[-1]
annotation_file = os.path.join(opts['annotation_dir'],
'mupit_mutations_' + ttype)
all_annotation, col_pos = read_mupit_file(annotation_file, significant_res)
pdb_ix = col_pos['pdb']
anot_gene_ix = col_pos['gene']
anot_tx_ix = col_pos['tx']
anot_res_ix = col_pos['res']
# sort by structure
all_annotation.sort(key=lambda x: x[pdb_ix])
for pdb_id, grp in it.groupby(all_annotation, lambda x: x[pdb_ix]):
# initialize the graph to empty
struct2graph = {}
struct_info = pdb_info[pdb_id].copy()
pdb_path = struct_info.pop('path')
struct_chains = []
for d in struct_info:
struct_chains.extend(struct_info[d])
#pdb_path = pdb2path[pdb_id]
struct = utils.read_structure(pdb_path, pdb_id)
if struct is None:
continue # skip if pdb file not found
# calculate the centers of geometry
all_cogs = pstruct.calc_center_of_geometry(struct, struct_chains)
# contains relevant mupit annotations for this pdb
tmp = list(grp)
# get significant residues
signif_struct_info = {}
non_signif_struct_info = {}
for s in tmp:
try:
tmp_pos = (s[col_pos['chain']], int(s[col_pos['pdb_res']]))
except:
continue
if (s[col_pos['pdb']], s[col_pos['chain']], int(s[col_pos['pdb_res']])) in significant_res:
signif_struct_info[tmp_pos] = (s[pdb_ix], s[anot_tx_ix], int(s[anot_res_ix]))
else:
non_signif_struct_info[tmp_pos] = (s[pdb_ix], s[anot_tx_ix], int(s[anot_res_ix]))
#print "Pushing update", pdb_id
# update the graph to reflect info from the current structure
struct2graph, signif_res_neighbours = update_graph(struct2graph, all_cogs, signif_struct_info, non_signif_struct_info,
struct, opts['radius'])
# format the results into the output list
tmp_out = retrieve_components(struct2graph, ttype, all_cogs, opts['radius'], signif_res_neighbours)
output += tmp_out
# format the results into the output list
# tmp_out = retrieve_components(struct2graph, ttype)
# output += tmp_out
logger.info('Finished {0}'.format(ttype))
# write output
with open(opts['output'], 'w') as handle:
for line in output:
handle.write('\t'.join(line)+'\n')
logger.info('Finished Successfully!!!')
if __name__ == '__main__':
opts = parse_arguments()
main(opts)