-
Notifications
You must be signed in to change notification settings - Fork 12
/
util.py
125 lines (107 loc) · 5.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import scipy.io as sio
import torch
from sklearn import preprocessing
from torch.autograd import Variable
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def map_label(label, classes):
mapped_label = torch.LongTensor(label.size())
for i in range(classes.size(0)):
mapped_label[label==classes[i]] = i
return mapped_label
class Logger(object):
def __init__(self, filename):
self.filename = filename
f = open(self.filename+'.log', "a")
f.close()
def write(self, message):
f = open(self.filename+'.log', "a")
f.write(message)
f.close()
class DATA_LOADER(object):
def __init__(self, opt):
assert opt.matdataset, 'Can load dataset in MATLAB format only'
self.read_matdataset(opt)
self.index_in_epoch = 0
self.epochs_completed = 0
def read_matdataset(self, opt):
# load features and labels
matcontent = sio.loadmat(opt.dataroot + "/" + opt.dataset + "/" + opt.action_embedding + ".mat")
feature = matcontent['features'].T
label = matcontent['labels'].astype(int).squeeze() - 1
# Load split details
matcontent = sio.loadmat(opt.dataroot + "/" + opt.dataset + "/split_" + str(opt.split) + "/" + opt.class_embedding + "_splits.mat")
# numpy array index starts from 0, matlab starts from 1
trainval_loc = matcontent['trainval_loc'].squeeze() - 1
train_loc = matcontent['train_loc'].squeeze() - 1
val_unseen_loc = matcontent['val_loc'].squeeze() - 1
test_seen_loc = matcontent['test_seen_loc'].squeeze() - 1
test_unseen_loc = matcontent['test_unseen_loc'].squeeze() - 1
self.attribute = torch.from_numpy(matcontent['att'].T).float()
if not opt.validation:
if opt.preprocessing:
if opt.standardization:
print('standardization...')
scaler = preprocessing.StandardScaler()
else:
scaler = preprocessing.MinMaxScaler()
_train_feature = scaler.fit_transform(feature[trainval_loc])
_test_seen_feature = scaler.transform(feature[test_seen_loc])
_test_unseen_feature = scaler.transform(feature[test_unseen_loc])
self.train_feature = torch.from_numpy(_train_feature).float()
mx = self.train_feature.max()
self.train_feature.mul_(1/mx)
self.train_label = torch.from_numpy(label[trainval_loc]).long()
self.test_unseen_feature = torch.from_numpy(_test_unseen_feature).float()
self.test_unseen_feature.mul_(1/mx)
self.test_unseen_label = torch.from_numpy(label[test_unseen_loc]).long()
self.test_seen_feature = torch.from_numpy(_test_seen_feature).float()
self.test_seen_feature.mul_(1/mx)
self.test_seen_label = torch.from_numpy(label[test_seen_loc]).long()
else:
self.train_feature = torch.from_numpy(feature[trainval_loc]).float()
self.train_label = torch.from_numpy(label[trainval_loc]).long()
self.test_unseen_feature = torch.from_numpy(feature[test_unseen_loc]).float()
self.test_unseen_label = torch.from_numpy(label[test_unseen_loc]).long()
self.test_seen_feature = torch.from_numpy(feature[test_seen_loc]).float()
self.test_seen_label = torch.from_numpy(label[test_seen_loc]).long()
else:
self.train_feature = torch.from_numpy(feature[train_loc]).float()
self.train_label = torch.from_numpy(label[train_loc]).long()
self.test_unseen_feature = torch.from_numpy(feature[val_unseen_loc]).float()
self.test_unseen_label = torch.from_numpy(label[val_unseen_loc]).long()
self.seenclasses = torch.from_numpy(np.unique(self.train_label.numpy()))
self.unseenclasses = torch.from_numpy(np.unique(self.test_unseen_label.numpy()))
self.ntrain = self.train_feature.size()[0]
self.ntrain_class = self.seenclasses.size(0)
self.ntest_class = self.unseenclasses.size(0)
self.train_class = self.seenclasses.clone()
self.allclasses = torch.arange(0, self.ntrain_class+self.ntest_class).long()
self.train_mapped_label = map_label(self.train_label, self.seenclasses)
# Random batch sampling
def next_batch(self, batch_size):
idx = torch.randperm(self.ntrain)[:batch_size]
batch_feature = self.train_feature[idx]
batch_label = self.train_label[idx]
batch_att = self.attribute[batch_label]
return batch_feature, batch_label, batch_att
def next_batch_one_class(self, batch_size):
if self.index_in_epoch == self.ntrain_class:
self.index_in_epoch = 0
perm = torch.randperm(self.ntrain_class)
self.train_class[perm] = self.train_class[perm]
iclass = self.train_class[self.index_in_epoch]
idx = self.train_label.eq(iclass).nonzero().squeeze()
perm = torch.randperm(idx.size(0))
idx = idx[perm]
iclass_feature = self.train_feature[idx]
iclass_label = self.train_label[idx]
self.index_in_epoch += 1
return iclass_feature[:batch_size], iclass_label[:batch_size], self.attribute[iclass_label[:batch_size]]