-
Notifications
You must be signed in to change notification settings - Fork 6
/
util.py
361 lines (297 loc) · 11.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"""
CALM
Copyright (c) 2021-present NAVER Corp.
MIT license
"""
import cv2
import json
import math
import logging
import numbers
import numpy as np
import os
import sys
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import score_map_method
_NUM_CLASSES_MAPPING = {
"CUB": 200,
"ILSVRC": 1000,
"OpenImages": 100,
}
_IMAGENET_MEAN = [0.485, .456, .406]
_IMAGENET_STDDEV = [.229, .224, .225]
_RESIZE_LENGTH = 224
def smoothing(score_maps, image_size, smoothing_ksize):
score_maps = score_maps.unsqueeze(1)
if score_maps.shape[2:] == image_size:
sigma = 0.3 * ((smoothing_ksize - 1) * 0.5 - 1) + 0.8
smoothing = GaussianSmoothing(1, smoothing_ksize, sigma)
score_maps = F.pad(score_maps,
compute_padding(
(smoothing_ksize, smoothing_ksize)),
mode='reflect')
score_maps = smoothing(score_maps)
return score_maps.squeeze(1)
def compute_padding(smoothing_ksize):
computed = [k // 2 for k in smoothing_ksize]
return [computed[1] - 1 if smoothing_ksize[0] % 2 == 0 else computed[1],
computed[1],
computed[0] - 1 if smoothing_ksize[1] % 2 == 0 else computed[0],
computed[0]]
def get_score_map(process, method):
return score_map_method.__dict__[
process if '_grad' in process else method]
def get_scoremaps(tester, inputs, targets, dataset_name):
smoothing_ksize = 1
score_map_process = tester.args.score_map_process
score_map_method_name = tester.args.score_map_method
scoremaps = get_score_map(
score_map_process, score_map_method_name)(
model=tester.model,
images=inputs,
targets=targets,
num_classes=_NUM_CLASSES_MAPPING[dataset_name],
score_map_method=score_map_method_name,
score_map_process=score_map_process,
method=score_map_method.__dict__[score_map_method_name],
smooth_grad_nr_iter=tester.args.smooth_grad_nr_iter,
smooth_grad_sigma=tester.args.smooth_grad_sigma,
integrated_grad_nr_iter=tester.args.integrated_grad_nr_iter,
)
if score_map_method_name == 'backprop':
scoremaps = smoothing(scoremaps, inputs.shape[2:], smoothing_ksize)
return scoremaps.cpu().detach().numpy()
def set_logger(name=None, level=None, fmt=None, datefmt=None, **kwargs):
logger = logging.getLogger(name)
if level is None:
level = logging.INFO
logger.setLevel(level)
# create console handler with a higher log level
console_handler = logging.StreamHandler()
console_handler.setLevel(level)
# create formatter and add it to the handlers
if fmt is None:
fmt = '[%(asctime)s] %(message)s'
if datefmt is None:
datefmt = '%Y-%m-%d %H:%M:%S'
formatter = logging.Formatter(fmt=fmt, datefmt=datefmt)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
return logger
class Logger(object):
"""Log stdout messages."""
def __init__(self, outfile):
self.terminal = sys.stdout
self.log = open(outfile, "w")
sys.stdout = self
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
def t2n(t):
return t.detach().cpu().numpy().astype(np.float)
def check_scoremap_validity(scoremap):
if not isinstance(scoremap, np.ndarray):
raise TypeError("Scoremap must be a numpy array; it is {}."
.format(type(scoremap)))
if scoremap.dtype != np.float:
raise TypeError("Scoremap must be of np.float type; it is of {} type."
.format(scoremap.dtype))
if len(scoremap.shape) != 2:
raise ValueError("Scoremap must be a 2D array; it is {}D."
.format(len(scoremap.shape)))
if np.isnan(scoremap).any():
raise ValueError("Scoremap must not contain nans.")
if (scoremap > 1).any() or (scoremap < 0).any():
raise ValueError("Scoremap must be in range [0, 1]."
"scoremap.min()={}, scoremap.max()={}."
.format(scoremap.min(), scoremap.max()))
def string_contains_any(string, substring_list):
for substring in substring_list:
if substring in string:
return True
return False
class Reporter(object):
def __init__(self, reporter_log_root, epoch):
self.log_file = os.path.join(reporter_log_root, str(epoch))
self.epoch = epoch
self.report_dict = {
'summary': True,
'step': self.epoch,
}
def add(self, key, val):
self.report_dict.update({key: val})
def write(self):
log_file = self.log_file
while os.path.isfile(log_file):
log_file += '_'
with open(log_file, 'w') as f:
f.write(json.dumps(self.report_dict))
def get_baseline(baseline_, inputs, device):
B, C, H, W = inputs.size()
if baseline_ == 'mean':
baseline = inputs.mean(dim=[2, 3], keepdim=True).expand(B, C, H,
W).contiguous()
elif baseline_ == 'noise':
baseline = inputs.mean(dim=[2, 3], keepdim=True).expand(B, C, H,
W).contiguous()
baseline += torch.randn(baseline.size()).to(device) * 0.2
elif baseline_ == 'blur':
kernel_size, kernel_std = 31, 15
smoothing = GaussianSmoothing(C, kernel_size, kernel_std).to(device)
baseline = smoothing(
F.pad(inputs, [kernel_size // 2] * 4, mode='reflect'))
elif baseline_ == 'zero':
baseline = torch.zeros_like(inputs).to(device)
return baseline
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors.
Output will have this number of channels as
well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels, kernel_size, sigma, dim=2):
super(GaussianSmoothing, self).__init__()
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
torch.exp(-((mgrid - mean) / std) ** 2 / 2)
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
self.conv = {1: F.conv1d, 2: F.conv2d, 3: F.conv3d}[dim]
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(input, weight=self.weight.cuda(), groups=self.groups)
def get_topk_to_zero_mask(mu, k, device):
B, _, H, W = mu.size()
mu_flat = mu.view(B, -1)
mu_sort_idxs = mu_flat.topk(k=H * W, dim=1)[1]
mu_topk_idxs = mu_sort_idxs[:, :int(k * H * W)]
# pixels of topk values to 0
mask = torch.ones(B, H * W).to(device)
mask.scatter_(1, mu_topk_idxs, 0.)
mask = mask.view(B, 1, H, W)
return mask
def random_mask_generator(inputs, device, k):
B, _, H, W = inputs.size()
randk = [np.random.choice(H * W, size=int(H * W * k), replace=False) for _
in range(B)]
randk = torch.tensor(np.array(randk)).to(device)
masks = torch.ones_like(inputs[:, 0, :, :])
masks.view(B, -1).scatter_(1, randk, 0)
masks = masks.view(B, 1, H, W)
return masks
def resize_scoremaps(scoremaps, dtype='tensor'):
"""
Inputs:
scoremaps: np.array, shape = (B, 28, 28)
dtype: 'tensor' or 'numpy'
Returns:
scoremaps: np.array or torch.tensor, size = (B, 224, 224)
"""
scoremaps_list = []
for scoremap in scoremaps:
scoremap = resize_scoremap(scoremap)
scoremap = torch.tensor(scoremap) if dtype == 'tensor' else scoremap
scoremaps_list.append(scoremap)
scoremaps = stack_scoremap(scoremaps_list, dtype)
return scoremaps
def stack_scoremap(scoremaps_list, dtype):
if dtype == 'tensor':
scoremaps = torch.stack(scoremaps_list, dim=0).unsqueeze(1)
elif dtype == 'numpy':
scoremaps = np.stack(scoremaps_list, axis=0)
else:
raise ValueError(f'{dtype} is not available.')
return scoremaps
def resize_scoremap(score_map,
image_size=(224, 224),
transform=cv2.INTER_LINEAR):
if score_map.shape != image_size:
score_map = cv2.resize(score_map, image_size,
interpolation=transform)
return score_map
def normalize_scoremap(score_map, norm_type):
"""
Args:
score_map: numpy.ndarray(size=(H, W), dtype=np.float)
Returns:
numpy.ndarray(size=(H, W), dtype=np.float) between 0 and 1.
If input array is constant, a zero-array is returned.
"""
if np.isnan(score_map).any():
return np.zeros_like(score_map)
if score_map.min() == score_map.max():
return np.zeros_like(score_map)
if norm_type == 'max':
score_map /= score_map.max()
elif norm_type == 'minmax':
score_map -= score_map.min()
score_map /= score_map.max()
elif norm_type == 'clipping':
pass
score_map[score_map > 1.] = 1.
score_map[score_map < 0.] = 0.
return score_map
class SaveScoreMap(object):
def __init__(self):
self.cnt = 0
def save(self, image, saliency, method_name):
path = os.path.join(method_name, 'saliency_{}.jpg'.format(self.cnt))
if len(image.size()) == 4:
image = image.squeeze(0)
image = t2n(image).transpose(1, 2, 0)
image = ((image * _IMAGENET_STDDEV) + _IMAGENET_MEAN)
saliency = np.expand_dims(saliency, axis=0)
saliency = np.repeat(saliency, 3, axis=0)
saliency = saliency.transpose(1, 2, 0)
output = np.concatenate([image, saliency], axis=1)
output = (output * 255).astype(np.uint8)
output = Image.fromarray(output)
output.save(path)
self.cnt += 1
def get_threshold_list(cam_curve_interval, threshold_type):
if threshold_type == 'log':
threshold_list = np.arange(0, 7, cam_curve_interval * 7)
threshold_list = [10 ** (th * (-1)) for th in threshold_list[::-1]]
elif threshold_type == 'even':
threshold_list = list(np.arange(0, 1, cam_curve_interval))
else:
raise ValueError(f'Invalid threshold_type argument: {threshold_type}')
return threshold_list