Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

I found the test code, but how do I run it as a standalone Python script? #45

Open
QingXu51820 opened this issue Jun 11, 2024 · 0 comments

Comments

@QingXu51820
Copy link

QingXu51820 commented Jun 11, 2024

def test(test_set, teacher, student, autoencoder, teacher_mean, teacher_std,
         q_st_start, q_st_end, q_ae_start, q_ae_end, test_output_dir=None,
         desc='Running inference'):
    y_true = []
    y_score = []
    for image, target, path in tqdm(test_set, desc=desc):
        orig_width = image.width
        orig_height = image.height
        image = default_transform(image)
        image = image[None]
        if on_gpu:
            image = image.cuda()
        map_combined, map_st, map_ae = predict(
            image=image, teacher=teacher, student=student,
            autoencoder=autoencoder, teacher_mean=teacher_mean,
            teacher_std=teacher_std, q_st_start=q_st_start, q_st_end=q_st_end,
            q_ae_start=q_ae_start, q_ae_end=q_ae_end)
        map_combined = torch.nn.functional.pad(map_combined, (4, 4, 4, 4))
        map_combined = torch.nn.functional.interpolate(
            map_combined, (orig_height, orig_width), mode='bilinear')
        map_combined = map_combined[0, 0].cpu().numpy()

        defect_class = os.path.basename(os.path.dirname(path))
        if test_output_dir is not None:
            img_nm = os.path.split(path)[1].split('.')[0]
            if not os.path.exists(os.path.join(test_output_dir, defect_class)):
                os.makedirs(os.path.join(test_output_dir, defect_class))
            file = os.path.join(test_output_dir, defect_class, img_nm + '.tiff')
            tifffile.imwrite(file, map_combined)

        y_true_image = 0 if defect_class == 'good' else 1
        y_score_image = np.max(map_combined)
        y_true.append(y_true_image)
        y_score.append(y_score_image)
    auc = roc_auc_score(y_true=y_true, y_score=y_score)
    return auc * 100

efficientad.py line 262-297

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant