-
Notifications
You must be signed in to change notification settings - Fork 0
/
vcf2phylip.py
431 lines (325 loc) · 14.1 KB
/
vcf2phylip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
The script converts a collection of SNPs in VCF format into a PHYLIP, FASTA,
NEXUS, or binary NEXUS file for phylogenetic analysis. The code is optimized
to process VCF files with sizes >1GB. For small VCF files the algorithm slows
down as the number of taxa increases (but is still fast).
Any ploidy is allowed, but binary NEXUS is produced only for diploid VCFs.
'''
__author__ = "Edgardo M. Ortiz"
__credits__ = "Juan D. Palacio-Mejía"
__version__ = "2.1"
__email__ = "e.ortiz.v@gmail.com"
__date__ = "2019-01-15"
import sys
import os
import argparse
import gzip
def main():
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument("-i", "--input", action="store", dest="filename", required=True,
help="Name of the input VCF file, can be gzipped")
parser.add_argument("-m", "--min-samples-locus", action="store", dest="min_samples_locus", type=int, default=4,
help="Minimum of samples required to be present at a locus, default=4 since is the minimum for phylogenetics.")
parser.add_argument("-o", "--outgroup", action="store", dest="outgroup", default="",
help="Name of the outgroup in the matrix. Sequence will be written as first taxon in the alignment.")
parser.add_argument("-p", "--phylip-disable", action="store_true", dest="phylipdisable", default=False,
help="A PHYLIP matrix is written by default unless you enable this flag")
parser.add_argument("-f", "--fasta", action="store_true", dest="fasta", default=False,
help="Write a FASTA matrix, disabled by default")
parser.add_argument("-n", "--nexus", action="store_true", dest="nexus", default=False,
help="Write a NEXUS matrix, disabled by default")
parser.add_argument("-b", "--nexus-binary", action="store_true", dest="nexusbin", default=False,
help="Write a binary NEXUS matrix for analysis of biallelic SNPs in SNAPP, disabled by default")
parser.add_argument("-v", "--version", action="version", version="%(prog)s {version}".format(version=__version__))
args = parser.parse_args()
filename = args.filename
# Prepare the opener if the SAM file is compressed
if filename.endswith(".gz"):
opener = gzip.open
else:
opener = open
min_samples_locus = args.min_samples_locus
outgroup = args.outgroup
phylipdisable = args.phylipdisable
fasta = args.fasta
nexus = args.nexus
nexusbin = args.nexusbin
# Dictionary of IUPAC ambiguities for nucleotides
# '*' means deletion for GATK (and other software?)
# Deletions are ignored when making the consensus
# Dictionary to translate IUPAC ambiguities, lowercase letters are used when "*" or "N" were present for a position,
# however, software like Genious for example are case insensitive and will imply ignore capitalization
amb = {"*":"-", "A":"A", "C":"C", "G":"G", "N":"N", "T":"T",
"*A":"a", "*C":"c", "*G":"g", "*N":"n", "*T":"t",
"AC":"M", "AG":"R", "AN":"a", "AT":"W", "CG":"S",
"CN":"c", "CT":"Y", "GN":"g", "GT":"K", "NT":"t",
"*AC":"m", "*AG":"r", "*AN":"a", "*AT":"w", "*CG":"s",
"*CN":"c", "*CT":"y", "*GN":"g", "*GT":"k", "*NT":"t",
"ACG":"V", "ACN":"m", "ACT":"H", "AGN":"r", "AGT":"D",
"ANT":"w", "CGN":"s", "CGT":"B", "CNT":"y", "GNT":"k",
"*ACG":"v", "*ACN":"m", "*ACT":"h", "*AGN":"r", "*AGT":"d",
"*ANT":"w", "*CGN":"s", "*CGT":"b", "*CNT":"y", "*GNT":"k",
"ACGN":"v", "ACGT":"N", "ACNT":"h", "AGNT":"d", "CGNT":"b",
"*ACGN":"v", "*ACGT":"N", "*ACNT":"h", "*AGNT":"d", "*CGNT":"b",
"*ACGNT":"N"}
# Dictionary for translating biallelic SNPs into SNAPP, only for diploid VCF
# 0 is homozygous reference
# 1 is heterozygous
# 2 is homozygous alternative
gen_bin = {"./.":"?",
".|.":"?",
"0/0":"0",
"0|0":"0",
"0/1":"1",
"0|1":"1",
"1/0":"1",
"1|0":"1",
"1/1":"2",
"1|1":"2"}
############################
# Process header of VCF file
ploidy = 0
gt_idx = []
missing = ""
with opener(filename) as vcf:
# Create a list to store sample names
sample_names = []
# Keep track of longest sequence name for padding with spaces in the output file
len_longest_name = 0
# Look for the line in the VCF header with the sample names
for line in vcf:
if line.startswith("#CHROM"):
# Split line into fields
broken = line.strip("\n").split("\t")
# If the minimum-samples-per-locus parameter is larger than the number of
# species in the alignment make it the same as the number of species
if min_samples_locus > len(broken[9:]):
min_samples_locus = len(broken[9:])
# Create a list of sample names and the keep track of the longest name length
for i in range(9, len(broken)):
name_sample = broken[i].replace("./","") # GATK adds "./" to sample names sometimes
sample_names.append(name_sample)
len_longest_name = max(len_longest_name, len(name_sample))
# Find out the ploidy of the genotypes, just distinguishes if sample is not haploid vs n-ploid
elif not line.startswith("#") and line.strip("\n") != "":
while ploidy == 0 and missing == "":
broken = line.strip("\n").split("\t")
for j in range(9, len(broken)):
if ploidy == 0:
if broken[j].split(":")[0][0] != ".":
ploidy = (len(broken[j].split(":")[0]) // 2) + 1
gt_idx = [i for i in range(0, len(broken[j].split(":")[0]), 2)]
missing = "/".join(["." for i in range(len(gt_idx))])
# Uncomment for debugging
# print(missing)
# print(broken[j])
# print(gt_idx)
# print(ploidy)
break
vcf.close()
print("\nConverting file " + filename + ":\n")
print("Number of samples in VCF: " + str(len(sample_names)))
####################
# SETUP OUTPUT FILES
# Output filename will be the same as input file, indicating the minimum of samples specified
if filename.endswith(".gz"):
outfile = filename.replace(".vcf.gz",".min"+str(min_samples_locus))
else:
outfile = filename.replace(".vcf",".min"+str(min_samples_locus))
# We need to create an intermediate file to hold the sequence data
# vertically and then transpose it to create the matrices
if fasta or nexus or not phylipdisable:
temporal = open(outfile+".tmp", "w")
# if binary NEXUS is selected also create a separate temporal
if nexusbin:
if ploidy == 2:
temporalbin = open(outfile+".bin.tmp", "w")
else:
print("Binary NEXUS not available for "+str(ploidy)+"-ploid VCF.")
nexusbin = False
##################
# PROCESS VCF FILE
index_last_sample = len(sample_names)+9
# Start processing SNPs of VCF file
with opener(filename) as vcf:
# Initialize line counter
snp_num = 0
snp_accepted = 0
snp_shallow = 0
snp_multinuc = 0
snp_biallelic = 0
while 1:
# Load large chunks of file into memory
vcf_chunk = vcf.readlines(50000)
if not vcf_chunk:
break
# Now process the SNPs one by one
for line in vcf_chunk:
if not line.startswith("#") and line.strip("\n") != "": # pyrad sometimes produces an empty line after the #CHROM line
# Split line into columns
broken = line.strip("\n").split("\t")
for g in range(9,len(broken)):
if broken[g].split(":")[0][0] == ".":
broken[g] = missing
# Keep track of number of genotypes processed
snp_num += 1
# Print progress every 500000 lines
if snp_num % 500000 == 0:
print(str(snp_num)+" genotypes processed.")
# Check if the SNP has the minimum of samples required
if (len(broken[9:]) - broken[9:].count(missing)) >= min_samples_locus:
# Check that ref genotype is a single nucleotide and alternative genotypes are single nucleotides
# print(broken)
if len(broken[3]) == 1 and (len(broken[4])-broken[4].count(",")) == (broken[4].count(",")+1):
# Add to running sum of accepted SNPs
snp_accepted += 1
# If nucleotide matrices are requested
if fasta or nexus or not phylipdisable:
# Create a dictionary for genotype to nucleotide translation
# each SNP may code the nucleotides in a different manner
nuc = {str(0):broken[3].replace("-","*"), ".":"N"}
for n in range(len(broken[4].split(","))):
nuc[str(n+1)] = broken[4].split(",")[n].replace("-","*")
# Uncomment for debugging
# print(broken[1])
# print(nuc)
# print([i.split(":")[0] for i in broken[9:]])
# Translate genotypes into nucleotides and the obtain the IUPAC ambiguity
# for heterozygous SNPs, and append to DNA sequence of each sample
try:
site_tmp = ''.join([amb[''.join(sorted(set([nuc[broken[i][j]] for j in gt_idx])))] for i in range(9, index_last_sample)])
except KeyError:
print("Skipped potentially malformed line: " + line)
continue
# Write entire row of single nucleotide genotypes to temporary file
temporal.write(site_tmp+"\n")
# Uncomment for debugging
# print(site_tmp)
# Write binary NEXUS for SNAPP if requested
if nexusbin:
# Check taht the SNP only has two alleles
if len(broken[4]) == 1:
# Add to running sum of biallelic SNPs
snp_biallelic += 1
# Translate genotype into 0 for homozygous ref, 1 for heterozygous, and 2 for homozygous alt
binsite_tmp = ''.join([(gen_bin[broken[i][0:3]]) for i in range(9, index_last_sample)])
# Write entire row to temporary file
temporalbin.write(binsite_tmp+"\n")
else:
# Keep track of loci rejected due to multinucleotide genotypes
snp_multinuc += 1
else:
# Keep track of loci rejected due to exceeded missing data
snp_shallow += 1
# Print useful information about filtering of SNPs
print("Total of genotypes processed: " + str(snp_num))
print("Genotypes excluded because they exceeded the amount of missing data allowed: " + str(snp_shallow))
print("Genotypes that passed missing data filter but were excluded for not being SNPs: " + str(snp_multinuc))
print("SNPs that passed the filters: " + str(snp_accepted))
if nexusbin:
print("Biallelic SNPs selected for binary NEXUS: " + str(snp_biallelic))
print("")
vcf.close()
if fasta or nexus or not phylipdisable:
temporal.close()
if nexusbin:
temporalbin.close()
#######################
# WRITE OUTPUT MATRICES
if not phylipdisable:
output_phy = open(outfile+".phy", "w")
header_phy = str(len(sample_names))+" "+str(snp_accepted)+"\n"
output_phy.write(header_phy)
if fasta:
output_fas = open(outfile+".fasta", "w")
if nexus:
output_nex = open(outfile+".nexus", "w")
header_nex = "#NEXUS\n\nBEGIN DATA;\n\tDIMENSIONS NTAX=" + str(len(sample_names)) + " NCHAR=" + str(snp_accepted) + ";\n\tFORMAT DATATYPE=DNA" + " MISSING=N" + " GAP=- ;\nMATRIX\n"
output_nex.write(header_nex)
if nexusbin:
output_nexbin = open(outfile+".bin.nexus", "w")
header_nexbin = "#NEXUS\n\nBEGIN DATA;\n\tDIMENSIONS NTAX=" + str(len(sample_names)) + " NCHAR=" + str(snp_biallelic) + ";\n\tFORMAT DATATYPE=SNP" + " MISSING=?" + " GAP=- ;\nMATRIX\n"
output_nexbin.write(header_nexbin)
# Store index of outgroup in list of sample names
idx_outgroup = "NA"
# Write outgroup as first sequence in alignment if the name is specified
if outgroup in sample_names:
idx_outgroup = sample_names.index(outgroup)
if fasta or nexus or not phylipdisable:
with open(outfile+".tmp") as tmp_seq:
seqout = ""
# This is where the transposing happens
for line in tmp_seq:
seqout += line[idx_outgroup]
# Write FASTA line
if fasta:
output_fas.write(">"+sample_names[idx_outgroup]+"\n"+seqout+"\n")
# Pad sequences names and write PHYLIP or NEXUS lines
padding = (len_longest_name + 3 - len(sample_names[idx_outgroup])) * " "
if not phylipdisable:
output_phy.write(sample_names[idx_outgroup]+padding+seqout+"\n")
if nexus:
output_nex.write(sample_names[idx_outgroup]+padding+seqout+"\n")
# Print current progress
print("Outgroup, "+outgroup+", added to the matrix(ces).")
if nexusbin:
with open(outfile+".bin.tmp") as bin_tmp_seq:
seqout = ""
# This is where the transposing happens
for line in bin_tmp_seq:
seqout += line[idx_outgroup]
# Write line of binary SNPs to NEXUS
padding = (len_longest_name + 3 - len(sample_names[idx_outgroup])) * " "
output_nexbin.write(sample_names[idx_outgroup]+padding+seqout+"\n")
# Print current progress
print("Outgroup, "+outgroup+", added to the binary matrix.")
# Write sequences of the ingroup
for s in range(0, len(sample_names)):
if s != idx_outgroup:
if fasta or nexus or not phylipdisable:
with open(outfile+".tmp") as tmp_seq:
seqout = ""
# This is where the transposing happens
for line in tmp_seq:
seqout += line[s]
# Write FASTA line
if fasta:
output_fas.write(">"+sample_names[s]+"\n"+seqout+"\n")
# Pad sequences names and write PHYLIP or NEXUS lines
padding = (len_longest_name + 3 - len(sample_names[s])) * " "
if not phylipdisable:
output_phy.write(sample_names[s]+padding+seqout+"\n")
if nexus:
output_nex.write(sample_names[s]+padding+seqout+"\n")
# Print current progress
print("Sample "+str(s+1)+" of "+str(len(sample_names))+", "+sample_names[s]+", added to the nucleotide matrix(ces).")
if nexusbin:
with open(outfile+".bin.tmp") as bin_tmp_seq:
seqout = ""
# This is where the transposing happens
for line in bin_tmp_seq:
seqout += line[s]
# Write line of binary SNPs to NEXUS
padding = (len_longest_name + 3 - len(sample_names[s])) * " "
output_nexbin.write(sample_names[s]+padding+seqout+"\n")
# Print current progress
print("Sample "+str(s+1)+" of "+str(len(sample_names))+", "+sample_names[s]+", added to the binary matrix.")
if not phylipdisable:
output_phy.close()
if fasta:
output_fas.close()
if nexus:
output_nex.write(";\nEND;\n")
output_nex.close()
if nexusbin:
output_nexbin.write(";\nEND;\n")
output_nexbin.close()
if fasta or nexus or not phylipdisable:
os.remove(outfile+".tmp")
if nexusbin:
os.remove(outfile+".bin.tmp")
print( "\nDone!\n")
if __name__ == "__main__":
main()