-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
69 lines (61 loc) · 2.37 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
class Configuration:
def __init__(self, train=False):
self.train = train
self.debug = False
self.dataset_root = 'dataset/ue_gen_2'
self.segment_root = 'mseg-semantic/temp_files/mask'
self.complete_data_root = 'dataset/complete_pcd'
self.prior_data_root = 'dataset/compare_lib'
self.object_list = []
self.object_count = 3
self.num_per_object = 1000
if train:
with open(f"dataset/train_list_sort.txt", 'r') as f:
for _ in range(self.object_count):
self.object_list.append(int(f.readline().strip()))
else:
with open(f"dataset/test_list_sort.txt", 'r') as f:
for _ in range(self.object_count):
self.object_list.append(int(f.readline().strip()))
self.pcd_points_num = 2048
# camera
self.cam_cx = 320
self.cam_cy = 240
self.cam_fx = 320
self.cam_fy = 320
self.height = 480
self.width = 640
self.cam_scale = 1.0
# downsample and dbscan
self.use_dbscan = False
self.downsample_num = 6000
self.tune_param = False
self.tune_number = 10
self.dbscan_eps = 2
self.dbscan_min_points = 100
self.voxel_downsample = True
self.estimate_voxel_size = True
self.default_voxel_size = 0.03
# pose eval
# models
self.pose_model = 'trained_ckps/pose_model_109_0.6639944425473611.pth'
self.pose_refine_model = 'trained_ckps/pose_refine_model_492_0.03314094381348696.pth'
self.refine_iters = 0 # set 0 if not use refinement model
# If use FPFH, will not use network to estimate the pose.
# Do NOT support FPFH in the pipeline
self.use_fpfh = False
self.use_icp = True
# completion
self.process_for_prior = True
self.partial_pcd_num = 2048
self.complete_pcd_num = 1024
self.prior_num = 2048
self.crop_point_num = 1024
# models
self.netG = 'Trained_Model/gen_net_Table_Attention1.pth'
self.netD = 'Trained_Model/dis_net_Table_Attention1.pth'
self.visualize = True
# output path
self.output_model_dir = 'trained_models'
self.output_train_log_dir = 'experiments/logs'
self.output_result_dir = 'experiments/logs'