-
Notifications
You must be signed in to change notification settings - Fork 7
/
test.py
47 lines (42 loc) · 2.28 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import time
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util.visualizer import save_images, save_images_by_frame_id
from util import html
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
# create a website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.epoch), str(opt.max_size))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
if opt.eval:
model.eval()
num_test = min(len(dataset), opt.ntest) if opt.ntest!=-1 else len(dataset)
print('total test samples: ', num_test)
for i, data in enumerate(dataset):
if i >= num_test: # only apply our model to opt.num_test images.
break
model.set_input(data, 'test') # unpack data from data loader
model.test() # run inference
if opt.calc_metric:
model.calculate_metric()
visuals = model.get_current_visuals() # get image results
img_path = model.get_image_paths() # get image paths
print('processing sample(%d/%d) %s' % (i, num_test, img_path))
save_images_by_frame_id(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, \
width=opt.display_winsize, scaling=opt.tensor_scaling)
if opt.calc_metric:
res, metrics = model.get_metrics()
for k, v in metrics.items():
print('%s: %.3f ' % (k, v))
webpage.save() # save the HTML