-
Notifications
You must be signed in to change notification settings - Fork 1
/
memory.c
2668 lines (2331 loc) · 83.1 KB
/
memory.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Physical memory management
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "exec/ioport.h"
#include "qapi/visitor.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qom/object.h"
#include "trace-root.h"
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "sysemu/kvm.h"
#include "sysemu/sysemu.h"
//#define DEBUG_UNASSIGNED
static unsigned memory_region_transaction_depth;
static bool memory_region_update_pending;
static bool ioeventfd_update_pending;
static bool global_dirty_log = false;
static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
= QTAILQ_HEAD_INITIALIZER(memory_listeners);
static QTAILQ_HEAD(, AddressSpace) address_spaces
= QTAILQ_HEAD_INITIALIZER(address_spaces);
typedef struct AddrRange AddrRange;
/*
* Note that signed integers are needed for negative offsetting in aliases
* (large MemoryRegion::alias_offset).
*/
struct AddrRange {
Int128 start;
Int128 size;
};
static AddrRange addrrange_make(Int128 start, Int128 size)
{
return (AddrRange) { start, size };
}
static bool addrrange_equal(AddrRange r1, AddrRange r2)
{
return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
}
static Int128 addrrange_end(AddrRange r)
{
return int128_add(r.start, r.size);
}
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
{
int128_addto(&range.start, delta);
return range;
}
static bool addrrange_contains(AddrRange range, Int128 addr)
{
return int128_ge(addr, range.start)
&& int128_lt(addr, addrrange_end(range));
}
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
{
return addrrange_contains(r1, r2.start)
|| addrrange_contains(r2, r1.start);
}
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
{
Int128 start = int128_max(r1.start, r2.start);
Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
return addrrange_make(start, int128_sub(end, start));
}
enum ListenerDirection { Forward, Reverse };
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##_args); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##_args); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
do { \
MemoryListener *_listener; \
struct memory_listeners_as *list = &(_as)->listeners; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, list, link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
/* No need to ref/unref .mr, the FlatRange keeps it alive. */
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
do { \
MemoryRegionSection mrs = section_from_flat_range(fr, as); \
MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
} while(0)
struct CoalescedMemoryRange {
AddrRange addr;
QTAILQ_ENTRY(CoalescedMemoryRange) link;
};
struct MemoryRegionIoeventfd {
AddrRange addr;
bool match_data;
uint64_t data;
EventNotifier *e;
};
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
MemoryRegionIoeventfd b)
{
if (int128_lt(a.addr.start, b.addr.start)) {
return true;
} else if (int128_gt(a.addr.start, b.addr.start)) {
return false;
} else if (int128_lt(a.addr.size, b.addr.size)) {
return true;
} else if (int128_gt(a.addr.size, b.addr.size)) {
return false;
} else if (a.match_data < b.match_data) {
return true;
} else if (a.match_data > b.match_data) {
return false;
} else if (a.match_data) {
if (a.data < b.data) {
return true;
} else if (a.data > b.data) {
return false;
}
}
if (a.e < b.e) {
return true;
} else if (a.e > b.e) {
return false;
}
return false;
}
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
MemoryRegionIoeventfd b)
{
return !memory_region_ioeventfd_before(a, b)
&& !memory_region_ioeventfd_before(b, a);
}
typedef struct FlatRange FlatRange;
typedef struct FlatView FlatView;
/* Range of memory in the global map. Addresses are absolute. */
struct FlatRange {
MemoryRegion *mr;
hwaddr offset_in_region;
AddrRange addr;
uint8_t dirty_log_mask;
bool romd_mode;
bool readonly;
};
/* Flattened global view of current active memory hierarchy. Kept in sorted
* order.
*/
struct FlatView {
struct rcu_head rcu;
unsigned ref;
FlatRange *ranges;
unsigned nr;
unsigned nr_allocated;
};
typedef struct AddressSpaceOps AddressSpaceOps;
#define FOR_EACH_FLAT_RANGE(var, view) \
for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
static inline MemoryRegionSection
section_from_flat_range(FlatRange *fr, AddressSpace *as)
{
return (MemoryRegionSection) {
.mr = fr->mr,
.address_space = as,
.offset_within_region = fr->offset_in_region,
.size = fr->addr.size,
.offset_within_address_space = int128_get64(fr->addr.start),
.readonly = fr->readonly,
};
}
static bool flatrange_equal(FlatRange *a, FlatRange *b)
{
return a->mr == b->mr
&& addrrange_equal(a->addr, b->addr)
&& a->offset_in_region == b->offset_in_region
&& a->romd_mode == b->romd_mode
&& a->readonly == b->readonly;
}
static void flatview_init(FlatView *view)
{
view->ref = 1;
view->ranges = NULL;
view->nr = 0;
view->nr_allocated = 0;
}
/* Insert a range into a given position. Caller is responsible for maintaining
* sorting order.
*/
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
{
if (view->nr == view->nr_allocated) {
view->nr_allocated = MAX(2 * view->nr, 10);
view->ranges = g_realloc(view->ranges,
view->nr_allocated * sizeof(*view->ranges));
}
memmove(view->ranges + pos + 1, view->ranges + pos,
(view->nr - pos) * sizeof(FlatRange));
view->ranges[pos] = *range;
memory_region_ref(range->mr);
++view->nr;
}
static void flatview_destroy(FlatView *view)
{
int i;
for (i = 0; i < view->nr; i++) {
memory_region_unref(view->ranges[i].mr);
}
g_free(view->ranges);
g_free(view);
}
static void flatview_ref(FlatView *view)
{
atomic_inc(&view->ref);
}
static void flatview_unref(FlatView *view)
{
if (atomic_fetch_dec(&view->ref) == 1) {
flatview_destroy(view);
}
}
static bool can_merge(FlatRange *r1, FlatRange *r2)
{
return int128_eq(addrrange_end(r1->addr), r2->addr.start)
&& r1->mr == r2->mr
&& int128_eq(int128_add(int128_make64(r1->offset_in_region),
r1->addr.size),
int128_make64(r2->offset_in_region))
&& r1->dirty_log_mask == r2->dirty_log_mask
&& r1->romd_mode == r2->romd_mode
&& r1->readonly == r2->readonly;
}
/* Attempt to simplify a view by merging adjacent ranges */
static void flatview_simplify(FlatView *view)
{
unsigned i, j;
i = 0;
while (i < view->nr) {
j = i + 1;
while (j < view->nr
&& can_merge(&view->ranges[j-1], &view->ranges[j])) {
int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
++j;
}
++i;
memmove(&view->ranges[i], &view->ranges[j],
(view->nr - j) * sizeof(view->ranges[j]));
view->nr -= j - i;
}
}
static bool memory_region_big_endian(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static bool memory_region_wrong_endianness(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
{
if (memory_region_wrong_endianness(mr)) {
switch (size) {
case 1:
break;
case 2:
*data = bswap16(*data);
break;
case 4:
*data = bswap32(*data);
break;
case 8:
*data = bswap64(*data);
break;
default:
abort();
}
}
}
static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
{
MemoryRegion *root;
hwaddr abs_addr = offset;
abs_addr += mr->addr;
for (root = mr; root->container; ) {
root = root->container;
abs_addr += root->addr;
}
return abs_addr;
}
static int get_cpu_index(void)
{
if (current_cpu) {
return current_cpu->cpu_index;
}
return -1;
}
static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->read(mr->opaque, addr, size);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return MEMTX_OK;
}
static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = 0;
MemTxResult r;
r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
}
*value |= (tmp & mask) << shift;
return r;
}
static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
}
mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
return MEMTX_OK;
}
static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
}
mr->ops->write(mr->opaque, addr, tmp, size);
return MEMTX_OK;
}
static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = (*value >> shift) & mask;
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (mr == &io_mem_notdirty) {
/* Accesses to code which has previously been translated into a TB show
* up in the MMIO path, as accesses to the io_mem_notdirty
* MemoryRegion. */
trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
} else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
}
return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
}
static MemTxResult access_with_adjusted_size(hwaddr addr,
uint64_t *value,
unsigned size,
unsigned access_size_min,
unsigned access_size_max,
MemTxResult (*access)(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask,
MemTxAttrs attrs),
MemoryRegion *mr,
MemTxAttrs attrs)
{
uint64_t access_mask;
unsigned access_size;
unsigned i;
MemTxResult r = MEMTX_OK;
if (!access_size_min) {
access_size_min = 1;
}
if (!access_size_max) {
access_size_max = 4;
}
/* FIXME: support unaligned access? */
access_size = MAX(MIN(size, access_size_max), access_size_min);
access_mask = -1ULL >> (64 - access_size * 8);
if (memory_region_big_endian(mr)) {
for (i = 0; i < size; i += access_size) {
r |= access(mr, addr + i, value, access_size,
(size - access_size - i) * 8, access_mask, attrs);
}
} else {
for (i = 0; i < size; i += access_size) {
r |= access(mr, addr + i, value, access_size, i * 8,
access_mask, attrs);
}
}
return r;
}
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
{
AddressSpace *as;
while (mr->container) {
mr = mr->container;
}
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
if (mr == as->root) {
return as;
}
}
return NULL;
}
/* Render a memory region into the global view. Ranges in @view obscure
* ranges in @mr.
*/
static void render_memory_region(FlatView *view,
MemoryRegion *mr,
Int128 base,
AddrRange clip,
bool readonly)
{
MemoryRegion *subregion;
unsigned i;
hwaddr offset_in_region;
Int128 remain;
Int128 now;
FlatRange fr;
AddrRange tmp;
if (!mr->enabled) {
return;
}
int128_addto(&base, int128_make64(mr->addr));
readonly |= mr->readonly;
tmp = addrrange_make(base, mr->size);
if (!addrrange_intersects(tmp, clip)) {
return;
}
clip = addrrange_intersection(tmp, clip);
if (mr->alias) {
int128_subfrom(&base, int128_make64(mr->alias->addr));
int128_subfrom(&base, int128_make64(mr->alias_offset));
render_memory_region(view, mr->alias, base, clip, readonly);
return;
}
/* Render subregions in priority order. */
QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
render_memory_region(view, subregion, base, clip, readonly);
}
if (!mr->terminates) {
return;
}
offset_in_region = int128_get64(int128_sub(clip.start, base));
base = clip.start;
remain = clip.size;
fr.mr = mr;
fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
fr.romd_mode = mr->romd_mode;
fr.readonly = readonly;
/* Render the region itself into any gaps left by the current view. */
for (i = 0; i < view->nr && int128_nz(remain); ++i) {
if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
continue;
}
if (int128_lt(base, view->ranges[i].addr.start)) {
now = int128_min(remain,
int128_sub(view->ranges[i].addr.start, base));
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, now);
flatview_insert(view, i, &fr);
++i;
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
now = int128_sub(int128_min(int128_add(base, remain),
addrrange_end(view->ranges[i].addr)),
base);
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
if (int128_nz(remain)) {
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, remain);
flatview_insert(view, i, &fr);
}
}
/* Render a memory topology into a list of disjoint absolute ranges. */
static FlatView *generate_memory_topology(MemoryRegion *mr)
{
FlatView *view;
view = g_new(FlatView, 1);
flatview_init(view);
if (mr) {
render_memory_region(view, mr, int128_zero(),
addrrange_make(int128_zero(), int128_2_64()), false);
}
flatview_simplify(view);
return view;
}
static void address_space_add_del_ioeventfds(AddressSpace *as,
MemoryRegionIoeventfd *fds_new,
unsigned fds_new_nb,
MemoryRegionIoeventfd *fds_old,
unsigned fds_old_nb)
{
unsigned iold, inew;
MemoryRegionIoeventfd *fd;
MemoryRegionSection section;
/* Generate a symmetric difference of the old and new fd sets, adding
* and deleting as necessary.
*/
iold = inew = 0;
while (iold < fds_old_nb || inew < fds_new_nb) {
if (iold < fds_old_nb
&& (inew == fds_new_nb
|| memory_region_ioeventfd_before(fds_old[iold],
fds_new[inew]))) {
fd = &fds_old[iold];
section = (MemoryRegionSection) {
.address_space = as,
.offset_within_address_space = int128_get64(fd->addr.start),
.size = fd->addr.size,
};
MEMORY_LISTENER_CALL(as, eventfd_del, Forward, §ion,
fd->match_data, fd->data, fd->e);
++iold;
} else if (inew < fds_new_nb
&& (iold == fds_old_nb
|| memory_region_ioeventfd_before(fds_new[inew],
fds_old[iold]))) {
fd = &fds_new[inew];
section = (MemoryRegionSection) {
.address_space = as,
.offset_within_address_space = int128_get64(fd->addr.start),
.size = fd->addr.size,
};
MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, §ion,
fd->match_data, fd->data, fd->e);
++inew;
} else {
++iold;
++inew;
}
}
}
static FlatView *address_space_get_flatview(AddressSpace *as)
{
FlatView *view;
rcu_read_lock();
view = atomic_rcu_read(&as->current_map);
flatview_ref(view);
rcu_read_unlock();
return view;
}
static void address_space_update_ioeventfds(AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
unsigned ioeventfd_nb = 0;
MemoryRegionIoeventfd *ioeventfds = NULL;
AddrRange tmp;
unsigned i;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (addrrange_intersects(fr->addr, tmp)) {
++ioeventfd_nb;
ioeventfds = g_realloc(ioeventfds,
ioeventfd_nb * sizeof(*ioeventfds));
ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
ioeventfds[ioeventfd_nb-1].addr = tmp;
}
}
}
address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
as->ioeventfds, as->ioeventfd_nb);
g_free(as->ioeventfds);
as->ioeventfds = ioeventfds;
as->ioeventfd_nb = ioeventfd_nb;
flatview_unref(view);
}
static void address_space_update_topology_pass(AddressSpace *as,
const FlatView *old_view,
const FlatView *new_view,
bool adding)
{
unsigned iold, inew;
FlatRange *frold, *frnew;
/* Generate a symmetric difference of the old and new memory maps.
* Kill ranges in the old map, and instantiate ranges in the new map.
*/
iold = inew = 0;
while (iold < old_view->nr || inew < new_view->nr) {
if (iold < old_view->nr) {
frold = &old_view->ranges[iold];
} else {
frold = NULL;
}
if (inew < new_view->nr) {
frnew = &new_view->ranges[inew];
} else {
frnew = NULL;
}
if (frold
&& (!frnew
|| int128_lt(frold->addr.start, frnew->addr.start)
|| (int128_eq(frold->addr.start, frnew->addr.start)
&& !flatrange_equal(frold, frnew)))) {
/* In old but not in new, or in both but attributes changed. */
if (!adding) {
MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
}
++iold;
} else if (frold && frnew && flatrange_equal(frold, frnew)) {
/* In both and unchanged (except logging may have changed) */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
}
++iold;
++inew;
} else {
/* In new */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
}
++inew;
}
}
}
static void address_space_update_topology(AddressSpace *as)
{
FlatView *old_view = address_space_get_flatview(as);
FlatView *new_view = generate_memory_topology(as->root);
address_space_update_topology_pass(as, old_view, new_view, false);
address_space_update_topology_pass(as, old_view, new_view, true);
/* Writes are protected by the BQL. */
atomic_rcu_set(&as->current_map, new_view);
call_rcu(old_view, flatview_unref, rcu);
/* Note that all the old MemoryRegions are still alive up to this
* point. This relieves most MemoryListeners from the need to
* ref/unref the MemoryRegions they get---unless they use them
* outside the iothread mutex, in which case precise reference
* counting is necessary.
*/
flatview_unref(old_view);
address_space_update_ioeventfds(as);
}
void memory_region_transaction_begin(void)
{
qemu_flush_coalesced_mmio_buffer();
++memory_region_transaction_depth;
}
void memory_region_transaction_commit(void)
{
AddressSpace *as;
assert(memory_region_transaction_depth);
assert(qemu_mutex_iothread_locked());
--memory_region_transaction_depth;
if (!memory_region_transaction_depth) {
if (memory_region_update_pending) {
MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
address_space_update_topology(as);
}
memory_region_update_pending = false;
MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
} else if (ioeventfd_update_pending) {
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
address_space_update_ioeventfds(as);
}
ioeventfd_update_pending = false;
}
}
}
static void memory_region_destructor_none(MemoryRegion *mr)
{
}
static void memory_region_destructor_ram(MemoryRegion *mr)
{
qemu_ram_free(mr->ram_block);
}
static bool memory_region_need_escape(char c)
{
return c == '/' || c == '[' || c == '\\' || c == ']';
}
static char *memory_region_escape_name(const char *name)
{
const char *p;
char *escaped, *q;
uint8_t c;
size_t bytes = 0;
for (p = name; *p; p++) {
bytes += memory_region_need_escape(*p) ? 4 : 1;
}
if (bytes == p - name) {
return g_memdup(name, bytes + 1);
}
escaped = g_malloc(bytes + 1);
for (p = name, q = escaped; *p; p++) {
c = *p;
if (unlikely(memory_region_need_escape(c))) {
*q++ = '\\';
*q++ = 'x';
*q++ = "0123456789abcdef"[c >> 4];
c = "0123456789abcdef"[c & 15];
}
*q++ = c;
}
*q = 0;
return escaped;
}
void memory_region_init(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
mr->size = int128_make64(size);
if (size == UINT64_MAX) {
mr->size = int128_2_64();
}
mr->name = g_strdup(name);
mr->owner = owner;
mr->ram_block = NULL;
if (name) {
char *escaped_name = memory_region_escape_name(name);
char *name_array = g_strdup_printf("%s[*]", escaped_name);
if (!owner) {
owner = container_get(qdev_get_machine(), "/unattached");
}
object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);