This retriever microservice is a highly efficient search service designed for handling and retrieving embedding vectors. It operates by receiving an embedding vector as input and conducting a similarity search against vectors stored in a VectorDB database. Users must specify the VectorDB's URL and the index name, and the service searches within that index to find documents with the highest similarity to the input vector.
The service primarily utilizes similarity measures in vector space to rapidly retrieve contentually similar documents. The vector-based retrieval approach is particularly suited for handling large datasets, offering fast and accurate search results that significantly enhance the efficiency and quality of information retrieval.
Overall, this microservice provides robust backend support for applications requiring efficient similarity searches, playing a vital role in scenarios such as recommendation systems, information retrieval, or any other context where precise measurement of document similarity is crucial.
To start the retriever microservice, you must first install the required python packages.
pip install -r requirements.txt
model=BAAI/bge-base-en-v1.5
volume=$PWD/data
docker run -d -p 6060:80 -v $volume:/data -e http_proxy=$http_proxy -e https_proxy=$https_proxy --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-1.5 --model-id $model
Health check the embedding service with:
curl 127.0.0.1:6060/embed \
-X POST \
-d '{"inputs":"What is Deep Learning?"}' \
-H 'Content-Type: application/json'
You need to setup your own VectorDB service (Redis in this example), and ingest your knowledge documents into the vector database.
As for Redis, you could start a docker container using the following commands. Remember to ingest data into it manually.
docker run -d --name="redis-vector-db" -p 6379:6379 -p 8001:8001 redis/redis-stack:7.2.0-v9
export TEI_EMBEDDING_ENDPOINT="http://${your_ip}:6060"
python retriever_redis.py
export RETRIEVE_MODEL_ID="BAAI/bge-base-en-v1.5"
export REDIS_URL="redis://${your_ip}:6379"
export INDEX_NAME=${your_index_name}
export TEI_EMBEDDING_ENDPOINT="http://${your_ip}:6060"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_token}
cd ../../../../
docker build -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/redis/langchain/Dockerfile .
To start a docker container, you have two options:
- A. Run Docker with CLI
- B. Run Docker with Docker Compose
You can choose one as needed.
docker run -d --name="retriever-redis-server" -p 7000:7000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e REDIS_URL=$REDIS_URL -e INDEX_NAME=$INDEX_NAME -e TEI_EMBEDDING_ENDPOINT=$TEI_EMBEDDING_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN opea/retriever-redis:latest
docker compose -f docker_compose_retriever.yaml up -d
curl http://localhost:7000/v1/health_check \
-X GET \
-H 'Content-Type: application/json'
To consume the Retriever Microservice, you can generate a mock embedding vector of length 768 with Python.
export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
curl http://${your_ip}:7000/v1/retrieval \
-X POST \
-d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding}}" \
-H 'Content-Type: application/json'
You can set the parameters for the retriever.
export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
curl http://localhost:7000/v1/retrieval \
-X POST \
-d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding},\"search_type\":\"similarity\", \"k\":4}" \
-H 'Content-Type: application/json'
export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
curl http://localhost:7000/v1/retrieval \
-X POST \
-d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding},\"search_type\":\"similarity_distance_threshold\", \"k\":4, \"distance_threshold\":1.0}" \
-H 'Content-Type: application/json'
export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
curl http://localhost:7000/v1/retrieval \
-X POST \
-d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding},\"search_type\":\"similarity_score_threshold\", \"k\":4, \"score_threshold\":0.2}" \
-H 'Content-Type: application/json'
export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
curl http://localhost:7000/v1/retrieval \
-X POST \
-d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding},\"search_type\":\"mmr\", \"k\":4, \"fetch_k\":20, \"lambda_mult\":0.5}" \
-H 'Content-Type: application/json'