forked from bonlime/keras-deeplab-v3-plus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
484 lines (419 loc) · 22 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# -*- coding: utf-8 -*-
""" Deeplabv3+ model for Keras.
This model is based on TF repo:
https://github.com/tensorflow/models/tree/master/research/deeplab
On Pascal VOC, original model gets to 84.56% mIOU
MobileNetv2 backbone is based on this repo:
https://github.com/JonathanCMitchell/mobilenet_v2_keras
# Reference
- [Encoder-Decoder with Atrous Separable Convolution
for Semantic Image Segmentation](https://arxiv.org/pdf/1802.02611.pdf)
- [Xception: Deep Learning with Depthwise Separable Convolutions]
(https://arxiv.org/abs/1610.02357)
- [Inverted Residuals and Linear Bottlenecks: Mobile Networks for
Classification, Detection and Segmentation](https://arxiv.org/abs/1801.04381)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.keras.models import Model
from tensorflow.python.keras import layers
from tensorflow.python.keras.layers import Input
from tensorflow.python.keras.layers import Lambda
from tensorflow.python.keras.layers import Activation
from tensorflow.python.keras.layers import Concatenate
from tensorflow.python.keras.layers import Add
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import BatchNormalization
from tensorflow.python.keras.layers import Conv2D
from tensorflow.python.keras.layers import DepthwiseConv2D
from tensorflow.python.keras.layers import ZeroPadding2D
from tensorflow.python.keras.layers import GlobalAveragePooling2D
from tensorflow.python.keras.utils.layer_utils import get_source_inputs
from tensorflow.python.keras.utils.data_utils import get_file
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.applications.imagenet_utils import preprocess_input
WEIGHTS_PATH_X = "https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.1/deeplabv3_xception_tf_dim_ordering_tf_kernels.h5"
WEIGHTS_PATH_MOBILE = "https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.1/deeplabv3_mobilenetv2_tf_dim_ordering_tf_kernels.h5"
WEIGHTS_PATH_X_CS = "https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.2/deeplabv3_xception_tf_dim_ordering_tf_kernels_cityscapes.h5"
WEIGHTS_PATH_MOBILE_CS = "https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.2/deeplabv3_mobilenetv2_tf_dim_ordering_tf_kernels_cityscapes.h5"
def SepConv_BN(x, filters, prefix, stride=1, kernel_size=3, rate=1, depth_activation=False, epsilon=1e-3):
""" SepConv with BN between depthwise & pointwise. Optionally add activation after BN
Implements right "same" padding for even kernel sizes
Args:
x: input tensor
filters: num of filters in pointwise convolution
prefix: prefix before name
stride: stride at depthwise conv
kernel_size: kernel size for depthwise convolution
rate: atrous rate for depthwise convolution
depth_activation: flag to use activation between depthwise & poinwise convs
epsilon: epsilon to use in BN layer
"""
if stride == 1:
depth_padding = 'same'
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
x = ZeroPadding2D((pad_beg, pad_end))(x)
depth_padding = 'valid'
if not depth_activation:
x = Activation(tf.nn.relu)(x)
x = DepthwiseConv2D((kernel_size, kernel_size), strides=(stride, stride), dilation_rate=(rate, rate),
padding=depth_padding, use_bias=False, name=prefix + '_depthwise')(x)
x = BatchNormalization(name=prefix + '_depthwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation(tf.nn.relu)(x)
x = Conv2D(filters, (1, 1), padding='same',
use_bias=False, name=prefix + '_pointwise')(x)
x = BatchNormalization(name=prefix + '_pointwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation(tf.nn.relu)(x)
return x
def _conv2d_same(x, filters, prefix, stride=1, kernel_size=3, rate=1):
"""Implements right 'same' padding for even kernel sizes
Without this there is a 1 pixel drift when stride = 2
Args:
x: input tensor
filters: num of filters in pointwise convolution
prefix: prefix before name
stride: stride at depthwise conv
kernel_size: kernel size for depthwise convolution
rate: atrous rate for depthwise convolution
"""
if stride == 1:
return Conv2D(filters,
(kernel_size, kernel_size),
strides=(stride, stride),
padding='same', use_bias=False,
dilation_rate=(rate, rate),
name=prefix)(x)
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
x = ZeroPadding2D((pad_beg, pad_end))(x)
return Conv2D(filters,
(kernel_size, kernel_size),
strides=(stride, stride),
padding='valid', use_bias=False,
dilation_rate=(rate, rate),
name=prefix)(x)
def _xception_block(inputs, depth_list, prefix, skip_connection_type, stride,
rate=1, depth_activation=False, return_skip=False):
""" Basic building block of modified Xception network
Args:
inputs: input tensor
depth_list: number of filters in each SepConv layer. len(depth_list) == 3
prefix: prefix before name
skip_connection_type: one of {'conv','sum','none'}
stride: stride at last depthwise conv
rate: atrous rate for depthwise convolution
depth_activation: flag to use activation between depthwise & pointwise convs
return_skip: flag to return additional tensor after 2 SepConvs for decoder
"""
residual = inputs
for i in range(3):
residual = SepConv_BN(residual,
depth_list[i],
prefix + '_separable_conv{}'.format(i + 1),
stride=stride if i == 2 else 1,
rate=rate,
depth_activation=depth_activation)
if i == 1:
skip = residual
if skip_connection_type == 'conv':
shortcut = _conv2d_same(inputs, depth_list[-1], prefix + '_shortcut',
kernel_size=1,
stride=stride)
shortcut = BatchNormalization(name=prefix + '_shortcut_BN')(shortcut)
outputs = layers.add([residual, shortcut])
elif skip_connection_type == 'sum':
outputs = layers.add([residual, inputs])
elif skip_connection_type == 'none':
outputs = residual
if return_skip:
return outputs, skip
else:
return outputs
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id, skip_connection, rate=1):
in_channels = inputs.shape.as_list()[-1]
pointwise_conv_filters = int(filters * alpha)
pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
x = inputs
prefix = 'expanded_conv_{}_'.format(block_id)
if block_id:
# Expand
x = Conv2D(expansion * in_channels, kernel_size=1, padding='same',
use_bias=False, activation=None,
name=prefix + 'expand')(x)
x = BatchNormalization(epsilon=1e-3, momentum=0.999,
name=prefix + 'expand_BN')(x)
x = Activation(tf.nn.relu6, name=prefix + 'expand_relu')(x)
else:
prefix = 'expanded_conv_'
# Depthwise
x = DepthwiseConv2D(kernel_size=3, strides=stride, activation=None,
use_bias=False, padding='same', dilation_rate=(rate, rate),
name=prefix + 'depthwise')(x)
x = BatchNormalization(epsilon=1e-3, momentum=0.999,
name=prefix + 'depthwise_BN')(x)
x = Activation(tf.nn.relu6, name=prefix + 'depthwise_relu')(x)
# Project
x = Conv2D(pointwise_filters,
kernel_size=1, padding='same', use_bias=False, activation=None,
name=prefix + 'project')(x)
x = BatchNormalization(epsilon=1e-3, momentum=0.999,
name=prefix + 'project_BN')(x)
if skip_connection:
return Add(name=prefix + 'add')([inputs, x])
# if in_channels == pointwise_filters and stride == 1:
# return Add(name='res_connect_' + str(block_id))([inputs, x])
return x
def Deeplabv3(weights='pascal_voc', input_tensor=None, input_shape=(512, 512, 3), classes=21, backbone='mobilenetv2',
OS=16, alpha=1., activation=None):
""" Instantiates the Deeplabv3+ architecture
Optionally loads weights pre-trained
on PASCAL VOC or Cityscapes. This model is available for TensorFlow only.
# Arguments
weights: one of 'pascal_voc' (pre-trained on pascal voc),
'cityscapes' (pre-trained on cityscape) or None (random initialization)
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: shape of input image. format HxWxC
PASCAL VOC model was trained on (512,512,3) images. None is allowed as shape/width
classes: number of desired classes. PASCAL VOC has 21 classes, Cityscapes has 19 classes.
If number of classes not aligned with the weights used, last layer is initialized randomly
backbone: backbone to use. one of {'xception','mobilenetv2'}
activation: optional activation to add to the top of the network.
One of 'softmax', 'sigmoid' or None
OS: determines input_shape/feature_extractor_output ratio. One of {8,16}.
Used only for xception backbone.
alpha: controls the width of the MobileNetV2 network. This is known as the
width multiplier in the MobileNetV2 paper.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
Used only for mobilenetv2 backbone. Pretrained is only available for alpha=1.
# Returns
A Keras model instance.
# Raises
RuntimeError: If attempting to run this model with a
backend that does not support separable convolutions.
ValueError: in case of invalid argument for `weights` or `backbone`
"""
if not (weights in {'pascal_voc', 'cityscapes', None}):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `pascal_voc`, or `cityscapes` '
'(pre-trained on PASCAL VOC)')
if not (backbone in {'xception', 'mobilenetv2'}):
raise ValueError('The `backbone` argument should be either '
'`xception` or `mobilenetv2` ')
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
img_input = input_tensor
if backbone == 'xception':
if OS == 8:
entry_block3_stride = 1
middle_block_rate = 2 # ! Not mentioned in paper, but required
exit_block_rates = (2, 4)
atrous_rates = (12, 24, 36)
else:
entry_block3_stride = 2
middle_block_rate = 1
exit_block_rates = (1, 2)
atrous_rates = (6, 12, 18)
x = Conv2D(32, (3, 3), strides=(2, 2),
name='entry_flow_conv1_1', use_bias=False, padding='same')(img_input)
x = BatchNormalization(name='entry_flow_conv1_1_BN')(x)
x = Activation(tf.nn.relu)(x)
x = _conv2d_same(x, 64, 'entry_flow_conv1_2', kernel_size=3, stride=1)
x = BatchNormalization(name='entry_flow_conv1_2_BN')(x)
x = Activation(tf.nn.relu)(x)
x = _xception_block(x, [128, 128, 128], 'entry_flow_block1',
skip_connection_type='conv', stride=2,
depth_activation=False)
x, skip1 = _xception_block(x, [256, 256, 256], 'entry_flow_block2',
skip_connection_type='conv', stride=2,
depth_activation=False, return_skip=True)
x = _xception_block(x, [728, 728, 728], 'entry_flow_block3',
skip_connection_type='conv', stride=entry_block3_stride,
depth_activation=False)
for i in range(16):
x = _xception_block(x, [728, 728, 728], 'middle_flow_unit_{}'.format(i + 1),
skip_connection_type='sum', stride=1, rate=middle_block_rate,
depth_activation=False)
x = _xception_block(x, [728, 1024, 1024], 'exit_flow_block1',
skip_connection_type='conv', stride=1, rate=exit_block_rates[0],
depth_activation=False)
x = _xception_block(x, [1536, 1536, 2048], 'exit_flow_block2',
skip_connection_type='none', stride=1, rate=exit_block_rates[1],
depth_activation=True)
else:
OS = 8
first_block_filters = _make_divisible(32 * alpha, 8)
x = Conv2D(first_block_filters,
kernel_size=3,
strides=(2, 2), padding='same',
use_bias=False, name='Conv')(img_input)
x = BatchNormalization(
epsilon=1e-3, momentum=0.999, name='Conv_BN')(x)
x = Activation(tf.nn.relu6, name='Conv_Relu6')(x)
x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1,
expansion=1, block_id=0, skip_connection=False)
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2,
expansion=6, block_id=1, skip_connection=False)
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1,
expansion=6, block_id=2, skip_connection=True)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2,
expansion=6, block_id=3, skip_connection=False)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
expansion=6, block_id=4, skip_connection=True)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
expansion=6, block_id=5, skip_connection=True)
# stride in block 6 changed from 2 -> 1, so we need to use rate = 2
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, # 1!
expansion=6, block_id=6, skip_connection=False)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=7, skip_connection=True)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=8, skip_connection=True)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=9, skip_connection=True)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=10, skip_connection=False)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=11, skip_connection=True)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, rate=2,
expansion=6, block_id=12, skip_connection=True)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=2, # 1!
expansion=6, block_id=13, skip_connection=False)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=4,
expansion=6, block_id=14, skip_connection=True)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, rate=4,
expansion=6, block_id=15, skip_connection=True)
x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1, rate=4,
expansion=6, block_id=16, skip_connection=False)
# end of feature extractor
# branching for Atrous Spatial Pyramid Pooling
# Image Feature branch
shape_before = tf.shape(x)
b4 = GlobalAveragePooling2D()(x)
# from (b_size, channels)->(b_size, 1, 1, channels)
b4 = Lambda(lambda x: K.expand_dims(x, 1))(b4)
b4 = Lambda(lambda x: K.expand_dims(x, 1))(b4)
b4 = Conv2D(256, (1, 1), padding='same',
use_bias=False, name='image_pooling')(b4)
b4 = BatchNormalization(name='image_pooling_BN', epsilon=1e-5)(b4)
b4 = Activation(tf.nn.relu)(b4)
# upsample. have to use compat because of the option align_corners
size_before = tf.keras.backend.int_shape(x)
b4 = Lambda(lambda x: tf.compat.v1.image.resize(x, size_before[1:3],
method='bilinear', align_corners=True))(b4)
# simple 1x1
b0 = Conv2D(256, (1, 1), padding='same', use_bias=False, name='aspp0')(x)
b0 = BatchNormalization(name='aspp0_BN', epsilon=1e-5)(b0)
b0 = Activation(tf.nn.relu, name='aspp0_activation')(b0)
# there are only 2 branches in mobilenetV2. not sure why
if backbone == 'xception':
# rate = 6 (12)
b1 = SepConv_BN(x, 256, 'aspp1',
rate=atrous_rates[0], depth_activation=True, epsilon=1e-5)
# rate = 12 (24)
b2 = SepConv_BN(x, 256, 'aspp2',
rate=atrous_rates[1], depth_activation=True, epsilon=1e-5)
# rate = 18 (36)
b3 = SepConv_BN(x, 256, 'aspp3',
rate=atrous_rates[2], depth_activation=True, epsilon=1e-5)
# concatenate ASPP branches & project
x = Concatenate()([b4, b0, b1, b2, b3])
else:
x = Concatenate()([b4, b0])
x = Conv2D(256, (1, 1), padding='same',
use_bias=False, name='concat_projection')(x)
x = BatchNormalization(name='concat_projection_BN', epsilon=1e-5)(x)
x = Activation(tf.nn.relu)(x)
x = Dropout(0.1)(x)
# DeepLab v.3+ decoder
if backbone == 'xception':
# Feature projection
# x4 (x2) block
size_before2 = tf.keras.backend.int_shape(x)
x = Lambda(lambda xx: tf.compat.v1.image.resize(xx,
skip1.shape[1:3],
method='bilinear', align_corners=True))(x)
dec_skip1 = Conv2D(48, (1, 1), padding='same',
use_bias=False, name='feature_projection0')(skip1)
dec_skip1 = BatchNormalization(
name='feature_projection0_BN', epsilon=1e-5)(dec_skip1)
dec_skip1 = Activation(tf.nn.relu)(dec_skip1)
x = Concatenate()([x, dec_skip1])
x = SepConv_BN(x, 256, 'decoder_conv0',
depth_activation=True, epsilon=1e-5)
x = SepConv_BN(x, 256, 'decoder_conv1',
depth_activation=True, epsilon=1e-5)
# you can use it with arbitary number of classes
if (weights == 'pascal_voc' and classes == 21) or (weights == 'cityscapes' and classes == 19):
last_layer_name = 'logits_semantic'
else:
last_layer_name = 'custom_logits_semantic'
x = Conv2D(classes, (1, 1), padding='same', name=last_layer_name)(x)
size_before3 = tf.keras.backend.int_shape(img_input)
x = Lambda(lambda xx: tf.compat.v1.image.resize(xx,
size_before3[1:3],
method='bilinear', align_corners=True))(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
if activation in {'softmax', 'sigmoid'}:
x = tf.keras.layers.Activation(activation)(x)
model = Model(inputs, x, name='deeplabv3plus')
# load weights
if weights == 'pascal_voc':
if backbone == 'xception':
weights_path = get_file('deeplabv3_xception_tf_dim_ordering_tf_kernels.h5',
WEIGHTS_PATH_X,
cache_subdir='models')
else:
weights_path = get_file('deeplabv3_mobilenetv2_tf_dim_ordering_tf_kernels.h5',
WEIGHTS_PATH_MOBILE,
cache_subdir='models')
model.load_weights(weights_path, by_name=True)
elif weights == 'cityscapes':
if backbone == 'xception':
weights_path = get_file('deeplabv3_xception_tf_dim_ordering_tf_kernels_cityscapes.h5',
WEIGHTS_PATH_X_CS,
cache_subdir='models')
else:
weights_path = get_file('deeplabv3_mobilenetv2_tf_dim_ordering_tf_kernels_cityscapes.h5',
WEIGHTS_PATH_MOBILE_CS,
cache_subdir='models')
model.load_weights(weights_path, by_name=True)
return model
def preprocess_input(x):
"""Preprocesses a numpy array encoding a batch of images.
# Arguments
x: a 4D numpy array consists of RGB values within [0, 255].
# Returns
Input array scaled to [-1.,1.]
"""
return preprocess_input(x, mode='tf')