-
Notifications
You must be signed in to change notification settings - Fork 613
/
demo.py
76 lines (52 loc) · 3.24 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import jiagu
# jiagu.init() # 可手动初始化,也可以动态初始化
text = '苏州的天气不错'
words = jiagu.seg(text) # 分词
print(words)
words = jiagu.cut(text) # 分词
print(words)
pos = jiagu.pos(words) # 词性标注
print(pos)
ner = jiagu.ner(words) # 命名实体识别
print(ner)
# 字典模式分词
text = '思知机器人挺好用的'
words = jiagu.seg(text)
print(words)
# jiagu.load_userdict('dict/user.dict') # 加载自定义字典,支持字典路径、字典列表形式。
jiagu.load_userdict(['思知机器人'])
words = jiagu.seg(text)
print(words)
text = '''
该研究主持者之一、波士顿大学地球与环境科学系博士陈池(音)表示,“尽管中国和印度国土面积仅占全球陆地的9%,但两国为这一绿化过程贡献超过三分之一。考虑到人口过多的国家一般存在对土地过度利用的问题,这个发现令人吃惊。”
NASA埃姆斯研究中心的科学家拉玛·内曼尼(Rama Nemani)说,“这一长期数据能让我们深入分析地表绿化背后的影响因素。我们一开始以为,植被增加是由于更多二氧化碳排放,导致气候更加温暖、潮湿,适宜生长。”
“MODIS的数据让我们能在非常小的尺度上理解这一现象,我们发现人类活动也作出了贡献。”
NASA文章介绍,在中国为全球绿化进程做出的贡献中,有42%来源于植树造林工程,对于减少土壤侵蚀、空气污染与气候变化发挥了作用。
据观察者网过往报道,2017年我国全国共完成造林736.2万公顷、森林抚育830.2万公顷。其中,天然林资源保护工程完成造林26万公顷,退耕还林工程完成造林91.2万公顷。京津风沙源治理工程完成造林18.5万公顷。三北及长江流域等重点防护林体系工程完成造林99.1万公顷。完成国家储备林建设任务68万公顷。
'''
keywords = jiagu.keywords(text, 5) # 关键词抽取
print(keywords)
summarize = jiagu.summarize(text, 3) # 文本摘要
print(summarize)
# jiagu.findword('input.txt', 'output.txt') # 根据大规模语料,利用信息熵做新词发现。
# 知识图谱关系抽取
text = '姚明1980年9月12日出生于上海市徐汇区,祖籍江苏省苏州市吴江区震泽镇,前中国职业篮球运动员,司职中锋,现任中职联公司董事长兼总经理。'
knowledge = jiagu.knowledge(text)
print(knowledge)
# 情感分析
text = '很讨厌还是个懒鬼'
sentiment = jiagu.sentiment(text)
print(sentiment)
# 文本聚类(需要调参)
docs = [
"百度深度学习中文情感分析工具Senta试用及在线测试",
"情感分析是自然语言处理里面一个热门话题",
"AI Challenger 2018 文本挖掘类竞赛相关解决方案及代码汇总",
"深度学习实践:从零开始做电影评论文本情感分析",
"BERT相关论文、文章和代码资源汇总",
"将不同长度的句子用BERT预训练模型编码,映射到一个固定长度的向量上",
"自然语言处理工具包spaCy介绍",
"现在可以快速测试一下spaCy的相关功能,我们以英文数据为例,spaCy目前主要支持英文和德文"
]
cluster = jiagu.text_cluster(docs)
print(cluster)