-
Notifications
You must be signed in to change notification settings - Fork 59
/
minikinetics_dataset.py
105 lines (79 loc) · 3.36 KB
/
minikinetics_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
import torch.utils.data as data_utl
import numpy as np
import random
import os
import lintel
import json
class MK(data_utl.Dataset):
def __init__(self, split_file, root, mode='rgb', length=64, random=True, model='2d', size=112):
with open(split_file, 'r') as f:
self.data = json.load(f)
self.vids = [k for k in self.data.keys()]
if mode == 'flow':
new_data = {}
self.vids = ['flow'+v[3:] for v in self.vids]
for v in self.data.keys():
new_data['flow'+v[3:]] = self.data[v]
self.data = new_data
self.split_file = split_file
self.root = root
self.mode = mode
self.model = model
self.length = length
self.random = random
self.size = size
def __getitem__(self, index):
vid = self.vids[index]
cls = self.data[vid]
if not os.path.exists(os.path.join(self.root, vid)):
if self.mode == 'flow' and self.model == '2d':
return np.zeros((3, 20, self.size, self.size), dtype=np.float32), 0
elif self.mode == 'flow' and self.model == '3d':
return np.zeros((2, self.length, self.size, self.size), dtype=np.float32), 0
with open(os.path.join(self.root, vid), 'rb') as f:
enc_vid = f.read()
df, w, h, _ = lintel.loadvid(enc_vid, should_random_seek=self.random, num_frames=self.length*2)
df = np.frombuffer(df, dtype=np.uint8)
if w < 128 or h < 128 or h > 512 or w > 512:
df = np.zeros((self.length*2,128,128,3), dtype=np.uint8)
w=h=128
cls = 0
# center crop
if not self.random:
i = int(round((h-self.size)/2.))
j = int(round((w-self.size)/2.))
df = np.reshape(df, newshape=(self.length*2, h, w, 3))[::2, i:-i, j:-j, :]
else:
th = self.size
tw = self.size
#print(h, th, h-th)
i = random.randint(0, h - th) if h!=th else 0
j = random.randint(0, w - tw) if w!=tw else 0
df = np.reshape(df, newshape=(self.length*2, h, w, 3))[::2, i:i+th, j:j+tw, :]
if random.random() < 0.5:
df = np.flip(df, axis=2).copy()
if self.mode == 'flow':
#print(df[:,:,:,1:].mean())
#exit()
# only take the 2 channels corresponding to flow (x,y)
df = df[:,:,:,1:]
if self.model == '2d':
# this should be redone...
# stack 10 along channel axis
df = np.asarray([df[:10],df[2:12],df[4:14]]) # gives 3x10xHxWx2
df = df.transpose(0,1,4,2,3).reshape(3,20,self.size,self.size).transpose(0,2,3,1)
df = 1-2*(df.astype(np.float32)/255)
if self.model == '2d':
# 2d -> return TxCxHxW
return df.transpose([0,3,1,2]), cls
# 3d -> return CxTxHxW
return df.transpose([3,0,1,2]), cls
def __len__(self):
return len(self.data.keys())
if __name__ == '__main__':
train = '/ssd/ajpiergi/minikinetics_train.json'
val = '/ssd/ajpiergi/minikinetics_val.json'
root = '/ssd/ajpiergi/minikinetics/'
dataset_tr = MK(train, root, length=16, model='2d', mode='flow')
print(dataset_tr[random.randint(0,1000)])