forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
296 lines (268 loc) · 10.8 KB
/
llm-harness-evaluation.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
name: LLM Harness Evaluation
# Cancel previous runs in the PR when you push new commits
concurrency:
group: ${{ github.workflow }}-llm-nightly-test-${{ github.event.pull_request.number || github.run_id }}
cancel-in-progress: true
permissions:
contents: read
# Controls when the action will run.
on:
schedule:
- cron: "30 12 * * *" # GMT time, 12:30 GMT == 20:30 China
pull_request:
branches: [main]
paths:
- ".github/workflows/llm-harness-evaluation.yml"
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
inputs:
model_name:
description: 'Model names, separated by comma and must be quoted.'
required: true
type: string
precision:
description: 'Precisions, separated by comma and must be quoted.'
required: true
type: string
task:
description: 'Tasks, separated by comma and must be quoted.'
required: true
type: string
runs-on:
description: 'Labels to filter the runners, separated by comma and must be quoted.'
default: "accuracy"
required: false
type: string
# A workflow run is made up of one or more jobs that can run sequentially or in parallel
jobs:
llm-cpp-build:
uses: ./.github/workflows/llm-binary-build.yml
with:
platform: 'Linux'
# Set the testing matrix based on the event (schedule, PR, or manual dispatch)
set-matrix:
runs-on: ubuntu-latest
outputs:
model_name: ${{ steps.set-matrix.outputs.model_name }}
precision: ${{ steps.set-matrix.outputs.precision }}
task: ${{ steps.set-matrix.outputs.task }}
runner: ${{ steps.set-matrix.outputs.runner }}
steps:
- name: set-nightly-env
if: ${{github.event_name == 'schedule'}}
env:
NIGHTLY_MATRIX_MODEL_NAME: '["Llama2-7b-guanaco-dolphin-500", "falcon-7b-instruct-with-patch",
"Mistral-7B-v0.1", "mpt-7b-chat", "Baichuan2-7B-Chat-LLaMAfied"]'
NIGHTLY_MATRIX_TASK: '["arc", "truthfulqa", "winogrande"]'
NIGHTLY_MATRIX_PRECISION: '["sym_int4", "fp8"]'
NIGHTLY_LABELS: '["self-hosted", "llm", "accuracy-nightly"]'
run: |
echo "model_name=$NIGHTLY_MATRIX_MODEL_NAME" >> $GITHUB_ENV
echo "precision=$NIGHTLY_MATRIX_PRECISION" >> $GITHUB_ENV
echo "task=$NIGHTLY_MATRIX_TASK" >> $GITHUB_ENV
echo "runner=$NIGHTLY_LABELS" >> $GITHUB_ENV
- name: set-pr-env
if: ${{github.event_name == 'pull_request'}}
env:
PR_MATRIX_MODEL_NAME: '["stablelm-3b-4e1t"]'
PR_MATRIX_TASK: '["winogrande"]'
PR_MATRIX_PRECISION: '["sym_int4"]'
PR_LABELS: '["self-hosted", "llm", "temp-arc01"]'
run: |
echo "model_name=$PR_MATRIX_MODEL_NAME" >> $GITHUB_ENV
echo "precision=$PR_MATRIX_PRECISION" >> $GITHUB_ENV
echo "task=$PR_MATRIX_TASK" >> $GITHUB_ENV
echo "runner=$PR_LABELS" >> $GITHUB_ENV
- name: set-manual-env
if: ${{github.event_name == 'workflow_dispatch'}}
env:
MANUAL_MATRIX_MODEL_NAME: ${{format('[ {0} ]', inputs.model_name)}}
MANUAL_MATRIX_TASK: ${{format('[ {0} ]', inputs.task)}}
MANUAL_MATRIX_PRECISION: ${{format('[ {0} ]', inputs.precision)}}
MANUAL_LABELS: ${{format('["self-hosted", "llm", {0}]', inputs.runs-on)}}
run: |
echo "model_name=$MANUAL_MATRIX_MODEL_NAME" >> $GITHUB_ENV
echo "precision=$MANUAL_MATRIX_PRECISION" >> $GITHUB_ENV
echo "task=$MANUAL_MATRIX_TASK" >> $GITHUB_ENV
echo "runner=$MANUAL_LABELS" >> $GITHUB_ENV
- name: set-matrix
id: set-matrix
run: |
echo "model_name=$model_name" >> $GITHUB_OUTPUT
echo "precision=$precision" >> $GITHUB_OUTPUT
echo "task=$task" >> $GITHUB_OUTPUT
echo "runner=$runner" >> $GITHUB_OUTPUT
llm-harness-evaluation:
timeout-minutes: 1000
needs: [llm-cpp-build, set-matrix]
strategy:
fail-fast: false
matrix:
python-version: ["3.9"]
model_name: ${{ fromJson(needs.set-matrix.outputs.model_name) }}
task: ${{ fromJson(needs.set-matrix.outputs.task) }}
precision: ${{ fromJson(needs.set-matrix.outputs.precision) }}
device: [xpu]
runs-on: ${{ fromJson(needs.set-matrix.outputs.runner) }}
env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
ORIGIN_DIR: /mnt/disk1/models
HARNESS_HF_HOME: /mnt/disk1/harness_home
steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
shell: bash
run: |
set -e
python -m pip install --upgrade pip
python -m pip install --upgrade setuptools==58.0.4
python -m pip install --upgrade wheel
- name: Download llm binary
uses: ./.github/actions/llm/download-llm-binary
with:
platform: 'Linux'
- name: Run LLM install (all) test
uses: ./.github/actions/llm/setup-llm-env
with:
extra-dependency: "xpu_2.1"
- name: Install harness
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness/
shell: bash
run: |
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
cd lm-evaluation-harness
git checkout b281b09
pip install -e .
- name: Download models and datasets
shell: bash
run: |
echo "MODEL_PATH=${ORIGIN_DIR}/${{ matrix.model_name }}/" >> "$GITHUB_ENV"
MODEL_PATH=${ORIGIN_DIR}/${{ matrix.model_name }}/
if [ ! -d $HARNESS_HF_HOME ]; then
mkdir -p $HARNESS_HF_HOME
fi
wget -r -nH -nc -l inf --no-verbose --cut-dirs=2 ${LLM_FTP_URL}/llm/LeaderBoard_Datasets/ -P $HARNESS_HF_HOME/
wget -r -nH -nc --no-verbose --cut-dirs=1 ${LLM_FTP_URL}/llm/${{ matrix.model_name }} -P ${ORIGIN_DIR}
- name: Upgrade packages
shell: bash
run: |
pip install --upgrade datasets==2.14.6
if [ "${{ matrix.model_name }}" = "Mistral-7B-v0.1" ]; then
pip install --upgrade transformers==4.36
else
pip install --upgrade transformers==4.31
fi
- name: Run harness
shell: bash
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
env:
USE_XETLA: OFF
# SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
run: |
export HF_HOME=${HARNESS_HF_HOME}
export HF_DATASETS=$HARNESS_HF_HOME/datasets
export HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets
source /opt/intel/oneapi/setvars.sh
# set --limit if it's pr-triggered to accelerate pr action
if ${{github.event_name == 'pull_request'}}; then
export LIMIT="--limit 6"
fi
python run_llb.py \
--model bigdl-llm \
--pretrained ${MODEL_PATH} \
--precision ${{ matrix.precision }} \
--device ${{ matrix.device }} \
--tasks ${{ matrix.task }} \
--batch_size 1 --no_cache --output_path results \
$LIMIT
- uses: actions/upload-artifact@v3
with:
name: harness_results
path:
${{ github.workspace }}/python/llm/dev/benchmark/harness/results/**
- name: echo single result
shell: bash
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness/results/
run: |
cat ${{ matrix.model_name }}/${{ matrix.device }}/${{ matrix.precision }}/${{ matrix.task }}/result.json
llm-harness-summary:
if: ${{ always() }}
needs: llm-harness-evaluation
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install dependencies
shell: bash
run: |
pip install --upgrade pip
pip install jsonlines pytablewriter regex
- name: Download all results
uses: actions/download-artifact@v3
with:
name: harness_results
path: results
- name: Summarize the results
shell: bash
run: |
ls results
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table.py results
# TODO: change machine to store the results later
llm-harness-html:
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
needs: [llm-harness-evaluation]
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
- name: Set up Python 3.9
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install dependencies
shell: bash
run: |
pip install --upgrade pip
pip install jsonlines pytablewriter regex
pip install pandas==1.5.3
- name: Set output path
shell: bash
run: |
echo "DATE=$(date +%Y-%m-%d)" >> $GITHUB_ENV
if ${{github.event_name == 'pull_request'}}; then
echo 'ACC_FOLDER=/home/arda/action-runners/harness/pr-accuracy-data' >> $GITHUB_ENV
fi
if ${{github.event_name == 'schedule'}}; then
echo 'ACC_FOLDER=/home/arda/action-runners/harness/nightly-accuracy-data' >> $GITHUB_ENV
fi
- name: Download harness results
uses: actions/download-artifact@v3
with:
name: harness_results
path: ${{ env.ACC_FOLDER}}/${{ env.DATE }}
# Save fp16.csv in the parent folder of env.nightly_folder
- name: Download FP16 results
shell: bash
run: |
wget https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/test/benchmark/harness/fp16.csv -O $ACC_FOLDER/../fp16.csv
ls $ACC_FOLDER/..
- name: Write to CSV
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
shell: bash
run: |
ls $ACC_FOLDER/$DATE
python make_csv.py $ACC_FOLDER/$DATE $ACC_FOLDER
- name: Update HTML
working-directory: ${{ github.workspace }}/python/llm/test/benchmark/harness
shell: bash
run: |
python harness_csv_to_html.py -f $ACC_FOLDER
if ${{github.event_name == 'schedule'}}; then
python update_html_in_parent_folder.py -f $ACC_FOLDER
fi