-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
319 lines (250 loc) · 11.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import argparse
import os
import random
import shutil
import time
import math
import warnings
from datetime import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
from torch.optim.lr_scheduler import MultiStepLR
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from model.CNV import cnv
# to prevent PIL error while training
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import PIL.Image as PILI
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 training')
parser.add_argument("--experiments", default="./experiments", help="Path to experiments folder")
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=1000, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N',help='mini-batch size (default: 256), this is the total batch size of all GPUs on the current node when using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float, metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend')
parser.add_argument('--seed', default=123456, type=int, help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch N processes per node, which has N GPUs. This is the fastest way to use PyTorch for either single node or multi node data parallel training')
parser.add_argument('--pretrained-path', default=None, type=str, help='Path to the pretrained model')
parser.add_argument('--bit-width', default=4, type=int, help='Bit width of the model (level of quantization)')
parser.add_argument('--first-layer-bit-width', default=8, type=int, help='Bit width of the first layer of the model')
best_acc1 = 0
def main():
args = parser.parse_args()
prec_name = "_q{}".format(args.bit_width)
experiment_name = '{}{}_{}'.format("cnv", prec_name, datetime.now().strftime('%Y%m%d_%H%M%S'))
output_dir_path = os.path.join(args.experiments, experiment_name)
args.checkpoints_dir_path = os.path.join(output_dir_path, 'checkpoints')
os.mkdir(output_dir_path)
os.mkdir(args.checkpoints_dir_path)
if args.seed is not None:
print("Using seed = {}".format(args.seed))
torch.manual_seed(args.seed + args.rank)
torch.cuda.manual_seed(args.seed + args.rank)
np.random.seed(seed=args.seed + args.rank)
random.seed(args.seed + args.rank)
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
global best_acc1
args.gpu = "cuda:0"
model = cnv(args.bit_width, args.bit_width, args.first_layer_bit_width)
if not torch.cuda.is_available():
print('using CPU, this will be slow')
else:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
cudnn.benchmark = True
transform = transforms.Compose(
[transforms.ToTensor()])
train_transforms_list = [transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()]
transform_train = transforms.Compose(train_transforms_list)
trainset = datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=True)
valset = datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
val_loader = torch.utils.data.DataLoader(valset, batch_size=args.batch_size,
shuffle=False, num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion, args)
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args)
print("Training started at: ", datetime.now().strftime("%m/%d/%Y, %H:%M:%S"))
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
print("Training stopped at: ", datetime.now().strftime("%m/%d/%Y, %H:%M:%S"))
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, is_best, args.checkpoints_dir_path)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.clip_weights(-1,1)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
def save_checkpoint(state, is_best, checkpoints_dir):
torch.save(state, os.path.join(checkpoints_dir, 'checkpoint.pth.tar'))
if is_best:
shutil.copyfile(os.path.join(checkpoints_dir, 'checkpoint.pth.tar'), os.path.join(checkpoints_dir, 'model_best.pth.tar'))
def checkImage(path):
try:
im = PILI.open(path)
im.verify() #I perform also verify, don't know if he sees other types o defects
im.close() #reload is necessary in my case
return True
except:
print("This couldn't be loaded" + path)
return False
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.5 ** (epoch // 40))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()