diff --git a/OpenCV Projects/AI Anime Avatar Generator Model/AnimeGANv2.py b/OpenCV Projects/AI Anime Avatar Generator Model/AnimeGANv2.py new file mode 100644 index 000000000..288b4b755 --- /dev/null +++ b/OpenCV Projects/AI Anime Avatar Generator Model/AnimeGANv2.py @@ -0,0 +1,315 @@ +from tools.ops import * +from tools.utils import * +from glob import glob +import time +import numpy as np +from net import generator +from net.discriminator import D_net +from tools.data_loader import ImageGenerator +from tools.vgg19 import Vgg19 + +class AnimeGANv2(object) : + def __init__(self, sess, args): + self.model_name = 'AnimeGANv2' + self.sess = sess + self.checkpoint_dir = args.checkpoint_dir + self.log_dir = args.log_dir + self.dataset_name = args.dataset + + self.epoch = args.epoch + self.init_epoch = args.init_epoch # args.epoch // 20 + + self.gan_type = args.gan_type + self.batch_size = args.batch_size + self.save_freq = args.save_freq + + self.init_lr = args.init_lr + self.d_lr = args.d_lr + self.g_lr = args.g_lr + + """ Weight """ + self.g_adv_weight = args.g_adv_weight + self.d_adv_weight = args.d_adv_weight + self.con_weight = args.con_weight + self.sty_weight = args.sty_weight + self.color_weight = args.color_weight + self.tv_weight = args.tv_weight + + self.training_rate = args.training_rate + self.ld = args.ld + + self.img_size = args.img_size + self.img_ch = args.img_ch + + """ Discriminator """ + self.n_dis = args.n_dis + self.ch = args.ch + self.sn = args.sn + + self.sample_dir = os.path.join(args.sample_dir, self.model_dir) + check_folder(self.sample_dir) + + self.real = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch], name='real_A') + self.anime = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch], name='anime_A') + self.anime_smooth = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch], name='anime_smooth_A') + self.test_real = tf.placeholder(tf.float32, [1, None, None, self.img_ch], name='test_input') + + self.anime_gray = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch],name='anime_B') + + + self.real_image_generator = ImageGenerator('./dataset/train_photo', self.img_size, self.batch_size) + self.anime_image_generator = ImageGenerator('./dataset/{}'.format(self.dataset_name + '/style'), self.img_size, self.batch_size) + self.anime_smooth_generator = ImageGenerator('./dataset/{}'.format(self.dataset_name + '/smooth'), self.img_size, self.batch_size) + self.dataset_num = max(self.real_image_generator.num_images, self.anime_image_generator.num_images) + + self.vgg = Vgg19() + + print() + print("##### Information #####") + print("# gan type : ", self.gan_type) + print("# dataset : ", self.dataset_name) + print("# max dataset number : ", self.dataset_num) + print("# batch_size : ", self.batch_size) + print("# epoch : ", self.epoch) + print("# init_epoch : ", self.init_epoch) + print("# training image size [H, W] : ", self.img_size) + print("# g_adv_weight,d_adv_weight,con_weight,sty_weight,color_weight,tv_weight : ", self.g_adv_weight,self.d_adv_weight,self.con_weight,self.sty_weight,self.color_weight,self.tv_weight) + print("# init_lr,g_lr,d_lr : ", self.init_lr,self.g_lr,self.d_lr) + print(f"# training_rate G -- D: {self.training_rate} : 1" ) + print() + + ################################################################################## + # Generator + ################################################################################## + + def generator(self, x_init, reuse=False, scope="generator"): + with tf.variable_scope(scope, reuse=reuse): + G = generator.G_net(x_init) + return G.fake + + ################################################################################## + # Discriminator + ################################################################################## + + def discriminator(self, x_init, reuse=False, scope="discriminator"): + D = D_net(x_init, self.ch, self.n_dis, self.sn, reuse=reuse, scope=scope) + return D + + ################################################################################## + # Model + ################################################################################## + def gradient_panalty(self, real, fake, scope="discriminator"): + if self.gan_type.__contains__('dragan') : + eps = tf.random_uniform(shape=tf.shape(real), minval=0., maxval=1.) + _, x_var = tf.nn.moments(real, axes=[0, 1, 2, 3]) + x_std = tf.sqrt(x_var) # magnitude of noise decides the size of local region + + fake = real + 0.5 * x_std * eps + + alpha = tf.random_uniform(shape=[self.batch_size, 1, 1, 1], minval=0., maxval=1.) + interpolated = real + alpha * (fake - real) + + logit, _= self.discriminator(interpolated, reuse=True, scope=scope) + + grad = tf.gradients(logit, interpolated)[0] # gradient of D(interpolated) + grad_norm = tf.norm(flatten(grad), axis=1) # l2 norm + + GP = 0 + # WGAN - LP + if self.gan_type.__contains__('lp'): + GP = self.ld * tf.reduce_mean(tf.square(tf.maximum(0.0, grad_norm - 1.))) + + elif self.gan_type.__contains__('gp') or self.gan_type == 'dragan' : + GP = self.ld * tf.reduce_mean(tf.square(grad_norm - 1.)) + + return GP + + def build_model(self): + + """ Define Generator, Discriminator """ + self.generated = self.generator(self.real) + self.test_generated = self.generator(self.test_real, reuse=True) + + + anime_logit = self.discriminator(self.anime) + anime_gray_logit = self.discriminator(self.anime_gray, reuse=True) + + generated_logit = self.discriminator(self.generated, reuse=True) + smooth_logit = self.discriminator(self.anime_smooth, reuse=True) + + """ Define Loss """ + if self.gan_type.__contains__('gp') or self.gan_type.__contains__('lp') or self.gan_type.__contains__('dragan') : + GP = self.gradient_panalty(real=self.anime, fake=self.generated) + else : + GP = 0.0 + + # init pharse + init_c_loss = con_loss(self.vgg, self.real, self.generated) + init_loss = self.con_weight * init_c_loss + + self.init_loss = init_loss + + # gan + c_loss, s_loss = con_sty_loss(self.vgg, self.real, self.anime_gray, self.generated) + tv_loss = self.tv_weight * total_variation_loss(self.generated) + t_loss = self.con_weight * c_loss + self.sty_weight * s_loss + color_loss(self.real,self.generated) * self.color_weight + tv_loss + + g_loss = self.g_adv_weight * generator_loss(self.gan_type, generated_logit) + d_loss = self.d_adv_weight * discriminator_loss(self.gan_type, anime_logit, anime_gray_logit, generated_logit, smooth_logit) + GP + + self.Generator_loss = t_loss + g_loss + self.Discriminator_loss = d_loss + + """ Training """ + t_vars = tf.trainable_variables() + G_vars = [var for var in t_vars if 'generator' in var.name] + D_vars = [var for var in t_vars if 'discriminator' in var.name] + + self.init_optim = tf.train.AdamOptimizer(self.init_lr, beta1=0.5, beta2=0.999).minimize(self.init_loss, var_list=G_vars) + self.G_optim = tf.train.AdamOptimizer(self.g_lr , beta1=0.5, beta2=0.999).minimize(self.Generator_loss, var_list=G_vars) + self.D_optim = tf.train.AdamOptimizer(self.d_lr , beta1=0.5, beta2=0.999).minimize(self.Discriminator_loss, var_list=D_vars) + + """" Summary """ + self.G_loss = tf.summary.scalar("Generator_loss", self.Generator_loss) + self.D_loss = tf.summary.scalar("Discriminator_loss", self.Discriminator_loss) + + self.G_gan = tf.summary.scalar("G_gan", g_loss) + self.G_vgg = tf.summary.scalar("G_vgg", t_loss) + self.G_init_loss = tf.summary.scalar("G_init", init_loss) + + self.V_loss_merge = tf.summary.merge([self.G_init_loss]) + self.G_loss_merge = tf.summary.merge([self.G_loss, self.G_gan, self.G_vgg, self.G_init_loss]) + self.D_loss_merge = tf.summary.merge([self.D_loss]) + + def train(self): + # initialize all variables + self.sess.run(tf.global_variables_initializer()) + + # saver to save model + self.saver = tf.train.Saver(max_to_keep=self.epoch) + + # summary writer + self.writer = tf.summary.FileWriter(self.log_dir + '/' + self.model_dir, self.sess.graph) + + """ Input Image""" + real_img_op, anime_img_op, anime_smooth_op = self.real_image_generator.load_images(), self.anime_image_generator.load_images(), self.anime_smooth_generator.load_images() + + + # restore check-point if it exits + could_load, checkpoint_counter = self.load(self.checkpoint_dir) + if could_load: + start_epoch = checkpoint_counter + 1 + + print(" [*] Load SUCCESS") + else: + start_epoch = 0 + + print(" [!] Load failed...") + + # loop for epoch + init_mean_loss = [] + mean_loss = [] + # training times , G : D = self.training_rate : 1 + j = self.training_rate + for epoch in range(start_epoch, self.epoch): + for idx in range(int(self.dataset_num / self.batch_size)): + anime, anime_smooth, real = self.sess.run([anime_img_op, anime_smooth_op, real_img_op]) + train_feed_dict = { + self.real:real[0], + self.anime:anime[0], + self.anime_gray:anime[1], + self.anime_smooth:anime_smooth[1] + } + + if epoch < self.init_epoch : + # Init G + start_time = time.time() + + real_images, generator_images, _, v_loss, summary_str = self.sess.run([self.real, self.generated, + self.init_optim, + self.init_loss, self.V_loss_merge], feed_dict = train_feed_dict) + self.writer.add_summary(summary_str, epoch) + init_mean_loss.append(v_loss) + + print("Epoch: %3d Step: %5d / %5d time: %f s init_v_loss: %.8f mean_v_loss: %.8f" % (epoch, idx,int(self.dataset_num / self.batch_size), time.time() - start_time, v_loss, np.mean(init_mean_loss))) + if (idx+1)%200 ==0: + init_mean_loss.clear() + else : + start_time = time.time() + + if j == self.training_rate: + # Update D + _, d_loss, summary_str = self.sess.run([self.D_optim, self.Discriminator_loss, self.D_loss_merge], + feed_dict=train_feed_dict) + self.writer.add_summary(summary_str, epoch) + + # Update G + real_images, generator_images, _, g_loss, summary_str = self.sess.run([self.real, self.generated,self.G_optim, + self.Generator_loss, self.G_loss_merge], feed_dict = train_feed_dict) + self.writer.add_summary(summary_str, epoch) + + mean_loss.append([d_loss, g_loss]) + if j == self.training_rate: + + print( + "Epoch: %3d Step: %5d / %5d time: %f s d_loss: %.8f, g_loss: %.8f -- mean_d_loss: %.8f, mean_g_loss: %.8f" % ( + epoch, idx, int(self.dataset_num / self.batch_size), time.time() - start_time, d_loss, g_loss, np.mean(mean_loss, axis=0)[0], + np.mean(mean_loss, axis=0)[1])) + else: + print( + "Epoch: %3d Step: %5d / %5d time: %f s , g_loss: %.8f -- mean_g_loss: %.8f" % ( + epoch, idx, int(self.dataset_num / self.batch_size), time.time() - start_time, g_loss, np.mean(mean_loss, axis=0)[1])) + + if (idx + 1) % 200 == 0: + mean_loss.clear() + + j = j - 1 + if j < 1: + j = self.training_rate + + + if (epoch + 1) >= self.init_epoch and np.mod(epoch + 1, self.save_freq) == 0: + self.save(self.checkpoint_dir, epoch) + + if epoch >= self.init_epoch -1: + """ Result Image """ + val_files = glob('./dataset/{}/*.*'.format('val')) + save_path = './{}/{:03d}/'.format(self.sample_dir, epoch) + check_folder(save_path) + for i, sample_file in enumerate(val_files): + print('val: '+ str(i) + sample_file) + sample_image = np.asarray(load_test_data(sample_file, self.img_size)) + test_real,test_generated = self.sess.run([self.test_real,self.test_generated],feed_dict = {self.test_real:sample_image} ) + save_images(test_real, save_path+'{:03d}_a.jpg'.format(i), None) + save_images(test_generated, save_path+'{:03d}_b.jpg'.format(i), None) + + @property + def model_dir(self): + return "{}_{}_{}_{}_{}_{}_{}_{}_{}".format(self.model_name, self.dataset_name, + self.gan_type, + int(self.g_adv_weight), int(self.d_adv_weight), + int(self.con_weight), int(self.sty_weight), + int(self.color_weight), int(self.tv_weight)) + + + def save(self, checkpoint_dir, step): + checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir) + if not os.path.exists(checkpoint_dir): + os.makedirs(checkpoint_dir) + self.saver.save(self.sess, os.path.join(checkpoint_dir, self.model_name + '.model'), global_step=step) + + def load(self, checkpoint_dir): + print(" [*] Reading checkpoints...") + checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir) + + ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information + + if ckpt and ckpt.model_checkpoint_path: + ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line + self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name)) + counter = int(ckpt_name.split('-')[-1]) + print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name))) + return True, counter + else: + print(" [*] Failed to find a checkpoint") + return False, 0 diff --git a/OpenCV Projects/AI Anime Avatar Generator Model/LICENSE.md b/OpenCV Projects/AI Anime Avatar Generator Model/LICENSE.md new file mode 100644 index 000000000..8882e076d --- /dev/null +++ b/OpenCV Projects/AI Anime Avatar Generator Model/LICENSE.md @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2024 RAMESWAR BISOYI + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. \ No newline at end of file diff --git a/OpenCV Projects/AI Anime Avatar Generator Model/README.md b/OpenCV Projects/AI Anime Avatar Generator Model/README.md new file mode 100644 index 000000000..823139a98 --- /dev/null +++ b/OpenCV Projects/AI Anime Avatar Generator Model/README.md @@ -0,0 +1,99 @@ +# π€ AI Anime Avatar Generator using OpenCV and Matplotlib + +This repository contains a Python script to transform any given image into a smooth, anime-like avatar with soft edges, vibrant colors, and smooth shading transitions. The effect is inspired by traditional anime art styles. The project uses OpenCV and Matplotlib for image processing and display. + +## π οΈ Features +- Load an image from a file and display it in RGB format. +- Apply a smoother, more anime-like effect with soft edges and vibrant colors. +- Use Gaussian blurring, adaptive thresholding, and bilateral filtering to create the effect. +- Boost saturation and brightness to mimic anime-style vibrancy. +- Display the original image and the cartoonized image side by side. + +## π― Prerequisites + +Make sure you have Python 3.x installed. You'll also need the following Python libraries: + +```bash +pip install numpy opencv-python matplotlib +``` +## π How to Use +- Clone the repository: + +```bash +git clone https://github.com/yourusername/anime-avatar-generator.git +cd anime-avatar-generator +``` +- Replace the image path in the generate_anime_avatar() + - function with the path to your image file. + + +- Run the Python script: +```bash +python anime_avatar_generator.py +``` +Your anime-like avatar will be displayed side-by-side with the original image. + +## π Code Overview +- This project includes the following key functions: + +#### Load Image: +This function loads an image from a file and converts it into the RGB format that is compatible with the OpenCV and Matplotlib libraries. The image is then passed on to the next function for further processing. + +#### Smooth Anime Effect: +This function is the core of the anime avatar transformation. It applies several filters and transformations, including Gaussian blurring for smoother shading, adaptive thresholding for soft edges, and bilateral filtering for enhancing the vibrancy of the colors. These techniques create the anime-like style that combines soft shading transitions and vibrant hues. + +#### Display Images: +The final step involves displaying the original image and the cartoonized (anime-like) avatar side by side using Matplotlib. This helps in visually comparing the original with the modified version. + +## πΈ Example +- Hereβs an example of how an input image would be transformed into an anime-like avatar. + +#### Input Image: +