-
Notifications
You must be signed in to change notification settings - Fork 0
/
ElgotIteration.agda
355 lines (308 loc) · 16 KB
/
ElgotIteration.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
{-# OPTIONS --cubical --safe #-}
open import Level using (Level) renaming (suc to ℓ-suc)
open import Function using (id; _∘_; _$_)
open import Data.Product using (_×_; Σ; _,_; ∃-syntax; proj₁; proj₂)
open import CubicalIdentity using (_≡_; sym; trans; refl; cong; cong2; subst; subst-app)
open CubicalIdentity.≡-Reasoning
open import Category
open import Co-Cartesian
open import Functor
--*
{-
This module introduces the notion of Elgot iteration in a category.
-}
--*
module ElgotIteration {ℓ : Level} {Ob : Set (ℓ-suc ℓ)} {C : Category Ob} (CoC : Co-Cartesian C) where
open Co-Cartesian.Co-Cartesian CoC renaming (_⊎_ to _+_)
module †-axioms (_† : ∀ {X Y : Obj} → (X ➔ Y + X) → (X ➔ Y)) where
-- Fixpoint
Fix : Set (ℓ-suc ℓ)
Fix = ∀ {X Y : Obj} {f : X ➔ Y + X}
→ [ idm , f † ] ⊚ f ≡ f †
-- Naturality
Nat : Set (ℓ-suc ℓ)
Nat = ∀ {X Y Z : Obj} {f : X ➔ Y + X} {g : Y ➔ Z}
→ ((g ⊕ idm) ⊚ f) † ≡ g ⊚ f †
-- Dinaturality
Din : Set (ℓ-suc ℓ)
Din = ∀ {X Y Z : Obj} {g : X ➔ Y + Z} {h : Z ➔ Y + X}
→ ([ inl , h ] ⊚ g) † ≡ [ idm , ([ inl , g ] ⊚ h) † ] ⊚ g
-- Codiagonal
Cod : Set (ℓ-suc ℓ)
Cod = ∀ {X Y : Obj} {f : X ➔ (Y + X) + X}
→ ([ idm , inr ] ⊚ f) † ≡ f † †
module _ {D : Category Ob} {CoC-D : Co-Cartesian D}
{F : Functor D C id} (J : CoC-Functor CoC-D CoC F) where
open Co-Cartesian.Co-Cartesian CoC-D
using () renaming (_➔_ to _➔′_; idm to idm′; _⊕_ to _⊕′_)
open Functor.CoC-Functor J
Uni : Set (ℓ-suc ℓ)
Uni = ∀ {X Y Z : Obj} {f : X ➔ Y + X} {g : Z ➔ Y + Z} {h : Z ➔′ X}
→ f ⊚ (fmap h) ≡ (idm ⊕ fmap h) ⊚ g → f † ⊚ (fmap h) ≡ g †
open †-axioms
record ElgotIteration : Set (ℓ-suc ℓ) where
field
_† : ∀ {X Y : Obj} → (X ➔ Y + X) → (X ➔ Y)
fix : Fix _†
record ConwayIteration (It : ElgotIteration) : Set (ℓ-suc ℓ) where
open ElgotIteration It public
field
-- Naturality
nat : Nat _†
-- Dinaturality
din : Din _†
-- Codiagonal
cod : Cod _†
record TotalUniConway (It : ElgotIteration) {D : Category Ob} {CoC-D : Co-Cartesian D}
{F : Functor D C id} (J : CoC-Functor CoC-D CoC F) : Set (ℓ-suc ℓ) where
-- added uniformity, removed dinaturality;
-- the latter is derivable, which is shown below
open ElgotIteration It public
field
-- Naturality
nat : Nat _†
-- Codiagonal
cod : Cod _†
-- Uniformity
uni : Uni _† J
open Co-Cartesian.Co-Cartesian CoC-D
using () renaming (inl to inl′; inr to inr′
; _⊚_ to _⊚′_; idm to idm′; _➔_ to _➔′_
; _⊎_ to _+′_ ; _⊕_ to _⊕′_; [_,_] to [_,_]′)
open CoC-Functor J
-- some coherence properties of injections,
-- using the fact that J is identical on objects
fmap-⊎F-inl : ∀ {X Y : Obj} → fmap (⊎F→ {X} {Y} (X ➔′_) inl′) ≡ inl
fmap-⊎F-inl{X}{Y} = trans (sym $ subst-app (X ➔′_) {B₂ = X ➔_} (λ _ → fmap) ⊎F) $ sym inlF
fmap-⊎F-inr : ∀ {X Y : Obj} → fmap (⊎F→ {X} {Y} (Y ➔′_) inr′) ≡ inr
fmap-⊎F-inr{X}{Y} = trans (sym $ subst-app (Y ➔′_) {B₂ = Y ➔_} (λ _ → fmap) ⊎F) $ sym inrF
-- an instance of uniformity for inl
†-inl : ∀ {X Y Z : Obj} {f : (X + Z) ➔ Y + (X + Z)} {g : X ➔ Y + X}
→ f ⊚ inl ≡ (idm ⊕ inl) ⊚ g → f † ⊚ inl ≡ g †
†-inl {X} {Y} {Z} {f = f} {g = g} p =
begin
f † ⊚ inl
≡˘⟨ cong (_⊚_ (f †)) fmap-⊎F-inl ⟩
f † ⊚ fmap (⊎F→ (X ➔′_) inl′)
≡⟨ uni p′ ⟩
g †
∎
where
p′ : f ⊚ fmap (⊎F→ (X ➔′_) inl′) ≡ (idm ⊕ fmap (⊎F→ (X ➔′_) inl′)) ⊚ g
p′ = trans (cong (_⊚_ f) fmap-⊎F-inl) (trans p (cong (λ w → (idm ⊕ w) ⊚ g) $ sym fmap-⊎F-inl))
-- an instance of uniformity for inr
†-inr : ∀ {X Y Z : Obj} {f : (Z + X) ➔ Y + (Z + X)} {g : X ➔ Y + X}
→ f ⊚ inr ≡ (idm ⊕ inr) ⊚ g → f † ⊚ inr ≡ g †
†-inr {X} {Y} {Z} {f = f} {g = g} p =
begin
f † ⊚ inr
≡˘⟨ cong (_⊚_ (f †)) fmap-⊎F-inr ⟩
f † ⊚ fmap (⊎F→ (X ➔′_) inr′)
≡⟨ uni p′ ⟩
g †
∎
where
p′ : f ⊚ fmap (⊎F→ (X ➔′_) inr′) ≡ (idm ⊕ fmap (⊎F→ (X ➔′_) inr′)) ⊚ g
p′ = trans (cong (_⊚_ f) fmap-⊎F-inr) $ trans p (cong (λ w → (idm ⊕ w) ⊚ g) (sym fmap-⊎F-inr))
-- an instance of uniformity for swap
†-swap : ∀ {X Y Z : Obj} {f : (X + Y) ➔ Z + (X + Y)}
→ f † ⊚ swap ≡ ((idm ⊕ swap) ⊚ (f ⊚ swap)) †
†-swap {X} {Y} {Z} {f = f} =
begin
f † ⊚ swap
≡˘⟨ ⊚-cong₂ fmap-swap′ ⟩
f † ⊚ (fmap swap′)
≡⟨
uni (trans (sym ⊚-unitˡ) $ trans
(⊚-cong₁ $ trans (trans (sym [inl,inr]) $
([]-destruct
(trans (sym ⊚-unitʳ) $ ⊚-cong₂ $ sym ⊚-unitˡ)
(trans (sym ⊚-unitʳ) $ ⊚-cong₂ $ trans (sym swap-swap) $
⊚-cong (sym fmap-swap′) (sym fmap-swap′))
))
(sym ⊕-⊕)) $ sym ⊚-assoc)
⟩
((idm ⊕ fmap swap′) ⊚ (f ⊚ fmap swap′)) †
≡⟨ cong2 (λ w w′ → ((idm ⊕ w) ⊚ (f ⊚ w′)) †) fmap-swap′ fmap-swap′ ⟩
((idm ⊕ swap) ⊚ (f ⊚ swap)) †
∎
where
swap′ : ∀ {X Y : Obj} → X + Y ➔′ Y + X
swap′ {X} {Y} = ⊎F→ ((X + Y) ➔′_) (⊎F→ (_➔′ Y +′ X) [ inr′ , inl′ ]′)
fmap-swap′ : ∀ {X Y : Obj} → fmap (swap′{X}{Y}) ≡ swap{X}{Y}
fmap-swap′{X}{Y} =
begin
fmap (swap′{X}{Y})
≡˘⟨ subst-app ((X + Y) ➔′_) {B₂ = (X + Y) ➔_} (λ _ → fmap) ⊎F ⟩
⊎F→ (X + Y ➔_) (fmap (⊎F→ (_➔′ Y +′ X) [ inr′ , inl′ ]′))
≡˘⟨ cong (⊎F→ (X + Y ➔_)) (subst-app (_➔′ Y +′ X) {B₂ = _➔ Y +′ X} (λ _ → fmap) ⊎F) ⟩
⊎F→ (X + Y ➔_) (⊎F→ (_➔ Y +′ X) (fmap [ inr′ , inl′ ]′))
≡˘⟨ cong (⊎F→ (X + Y ➔_)) []F ⟩
⊎F→ (X + Y ➔_) ([ fmap inr′ , fmap inl′ ])
≡˘⟨ ⊎-destruct (trans []-inl (⊎F→⊚ h inl)) (trans []-inr (⊎F→⊚ h inr)) ⟩
[ ⊎F→ (_➔_ X) (h ⊚ inl) , ⊎F→ (_➔_ Y) (h ⊚ inr) ]
≡⟨
[]-destruct
(trans (cong (⊎F→ (_➔_ X)) []-inl) $ sym inrF)
(trans (cong (⊎F→ (_➔_ Y)) []-inr) $ sym inlF)
⟩
[ inr , inl ]
∎
where h = [ fmap inr′ , fmap inl′ ]
bekić : ∀ {X Y Z : Obj} {f : X ➔ (Y + X) + Z} {g : Z ➔ (Y + X) + Z}
→ [([ idm , g † ] ⊚ f)† , [ idm , ([ idm , g † ] ⊚ f)† ] ⊚ g † ]
≡ ([ idm ⊕ inl , inr ⊚ inr ] ⊚ [ f , g ]) †
bekić {f = f} {g = g} =
begin
[ ([ idm , g † ] ⊚ f) † , [ idm , ([ idm , g † ] ⊚ f) † ] ⊚ g † ]
-- using bekić₁
≡⟨ bekić₁ ⟩
([ (idm ⊕ inl) ⊚ ([ idm , g † ] ⊚ f) , (idm ⊕ inl) ⊚ g † ] †)
≡⟨ cong _† $ []-cong₁ ⊚-assoc ⟩
([ ((idm ⊕ inl) ⊚ [ idm , g † ]) ⊚ f , (idm ⊕ inl) ⊚ g † ] †)
≡⟨ cong _† $ []-cong₁ $ trans (⊚-cong₁ ⊚-distrib-[]) $ ⊚-cong₁ $ []-cong₁ ⊚-unitʳ ⟩
[ [ idm ⊕ inl , (idm ⊕ inl) ⊚ g † ] ⊚ f , (idm ⊕ inl) ⊚ g † ] †
≡˘⟨ cong _† $ []-cong₁ $ ⊚-cong₁ $ trans []-⊕ ([]-destruct ⊚-unitˡ ⊚-unitʳ) ⟩
[ ([ idm , (idm ⊕ inl) ⊚ g † ] ⊚ ((idm ⊕ inl) ⊕ idm)) ⊚ f , (idm ⊕ inl) ⊚ g † ] †
≡˘⟨ cong _† $ []-cong₁ $ ⊚-assoc ⟩
[ [ idm , (idm ⊕ inl) ⊚ g † ] ⊚ (((idm ⊕ inl) ⊕ idm) ⊚ f) , (idm ⊕ inl) ⊚ g † ] †
-- using naturality
≡⟨ cong _† $ []-destruct (⊚-cong₁ $ []-cong₂ $ sym nat) (sym nat) ⟩
[ [ idm , (((idm ⊕ inl) ⊕ idm) ⊚ g) † ] ⊚ (((idm ⊕ inl) ⊕ idm) ⊚ f) , (((idm ⊕ inl) ⊕ idm) ⊚ g) † ] †
-- using bekić₂
≡⟨ cong _† $ trans bekić₂ $ cong _† $ sym ⊚-distrib-[] ⟩
((idm ⊕ inr) ⊚ [ ((idm ⊕ inl) ⊕ idm) ⊚ f , ((idm ⊕ inl) ⊕ idm) ⊚ g ]) † †
≡⟨ cong (_† ∘ _†) $ ⊚-cong₂ $ sym ⊚-distrib-[] ⟩
((idm ⊕ inr) ⊚ (((idm ⊕ inl) ⊕ idm) ⊚ [ f , g ])) † †
≡⟨ cong (_† ∘ _†) $ trans ⊚-assoc $ ⊚-cong₁ $ trans ⊕-⊕ $
[]-destruct (⊚-cong₂ ⊚-unitˡ) (⊚-cong₂ ⊚-unitʳ) ⟩
(((idm ⊕ inl) ⊕ inr) ⊚ [ f , g ]) † †
-- using codiagonal
≡˘⟨ cod ⟩
([ idm , inr ] ⊚ (((idm ⊕ inl) ⊕ inr) ⊚ [ f , g ])) †
≡⟨ cong _† ⊚-assoc ⟩
(([ idm , inr ] ⊚ ((idm ⊕ inl) ⊕ inr)) ⊚ [ f , g ]) †
≡⟨ cong _† $ ⊚-cong₁ $ trans []-⊕ $ []-cong₁ ⊚-unitˡ ⟩
([(idm ⊕ inl) , inr ⊚ inr ] ⊚ [ f , g ]) †
∎
where
-- one instance of the Bekić law
bekić₁ : ∀ {X Y Z : Obj} {f : X ➔ Y + X}{g : Z ➔ Y + X}
→ [ f † , [ idm , f † ] ⊚ g ] ≡ [ (idm ⊕ inl) ⊚ f , (idm ⊕ inl) ⊚ g ] †
bekić₁ {f = f} {g = g} =
begin
[ f † , [ idm , f † ] ⊚ g ]
≡˘⟨ []-destruct (†-inl []-inl) $ ⊚-cong₁ $ []-cong₂ $ †-inl []-inl ⟩
[ h † ⊚ inl , [ idm , h † ⊚ inl ] ⊚ g ]
≡˘⟨ []-cong₂ $ ⊚-cong₁ $ []-cong₁ $ ⊚-unitʳ ⟩
[ h † ⊚ inl , [ idm ⊚ idm , h † ⊚ inl ] ⊚ g ]
≡˘⟨ []-cong₂ $ ⊚-cong₁ $ []-⊕ ⟩
[ h † ⊚ inl , ([ idm , h † ] ⊚ (idm ⊕ inl)) ⊚ g ]
≡˘⟨ []-cong₂ $ ⊚-assoc ⟩
[ h † ⊚ inl , [ idm , h † ] ⊚ ((idm ⊕ inl) ⊚ g) ]
≡˘⟨ []-cong₂ $ ⊚-cong₂ $ []-inr ⟩
[ h † ⊚ inl , [ idm , h † ] ⊚ (h ⊚ inr) ]
≡⟨ []-cong₂ $ ⊚-assoc ⟩
[ h † ⊚ inl , ([ idm , h † ] ⊚ h) ⊚ inr ]
≡⟨ []-cong₂ $ ⊚-cong₁ $ fix ⟩
[ h † ⊚ inl , h † ⊚ inr ]
≡˘⟨ ⊚-distrib-[] ⟩
h † ⊚ [ inl , inr ]
≡⟨ ⊚-cong₂ [inl,inr] ⟩
h † ⊚ idm
≡⟨ ⊚-unitʳ ⟩
h †
∎
where h = [ (idm ⊕ inl) ⊚ f , (idm ⊕ inl) ⊚ g ]
-- another instance of the Bekić law
bekić₂ : ∀ {X Y Z : Obj} {f : X ➔ Y + X} {g : Z ➔ Y + X}
→ [ [ idm , f † ] ⊚ g , f † ] ≡ [ (idm ⊕ inr) ⊚ g , (idm ⊕ inr) ⊚ f ] †
bekić₂ {f = f} {g = g} =
begin
[ [ idm , f † ] ⊚ g , f † ]
≡˘⟨ []-destruct (⊚-cong₁ $ []-cong₂ $ †-inr []-inr) (†-inr []-inr) ⟩
[ [ idm , h † ⊚ inr ] ⊚ g , h † ⊚ inr ]
≡˘⟨ []-cong₁ $ ⊚-cong₁ $ []-cong₁ $ ⊚-unitʳ ⟩
[ [ idm ⊚ idm , h † ⊚ inr ] ⊚ g , h † ⊚ inr ]
≡˘⟨ []-cong₁ $ ⊚-cong₁ $ []-⊕ ⟩
[ ([ idm , h † ] ⊚ (idm ⊕ inr)) ⊚ g , h † ⊚ inr ]
≡˘⟨ []-cong₁ $ ⊚-assoc ⟩
[ [ idm , h † ] ⊚ ((idm ⊕ inr) ⊚ g) , h † ⊚ inr ]
≡˘⟨ []-cong₁ $ ⊚-cong₂ $ []-inl ⟩
[ [ idm , h † ] ⊚ (h ⊚ inl) , h † ⊚ inr ]
≡⟨ []-cong₁ $ ⊚-assoc ⟩
[ ([ idm , h † ] ⊚ h) ⊚ inl , h † ⊚ inr ]
≡⟨ []-cong₁ $ ⊚-cong₁ $ fix ⟩
[ h † ⊚ inl , h † ⊚ inr ]
≡˘⟨ ⊚-distrib-[] ⟩
h † ⊚ [ inl , inr ]
≡⟨ ⊚-cong₂ [inl,inr] ⟩
h † ⊚ idm
≡⟨ ⊚-unitʳ ⟩
h †
∎
where h = [ (idm ⊕ inr) ⊚ g , (idm ⊕ inr) ⊚ f ]
-- Dinaturality
din : Din _†
din {g = g} {h = h} =
begin
([ inl , h ] ⊚ g) †
≡˘⟨ []-inl ⟩
[([ inl , h ] ⊚ g) † , [ idm , ([ inl , h ] ⊚ g) † ] ⊚ h ] ⊚ inl
≡˘⟨ ⊚-cong₁ helper₁ ⟩
[ (idm ⊕ inr) ⊚ g , (idm ⊕ inl) ⊚ h ] † ⊚ inl
≡⟨ trans (⊚-cong₁ (sym helper₂)) (trans (sym ⊚-assoc) (⊚-cong₂ []-inl)) ⟩
[ (idm ⊕ inr) ⊚ h , (idm ⊕ inl) ⊚ g ] † ⊚ inr
-- using fix
≡⟨ trans (⊚-cong₁ (sym fix)) (trans (sym ⊚-assoc) (trans (⊚-cong₂ []-inr) ⊚-assoc)) ⟩
([ idm , [ (idm ⊕ inr) ⊚ h , (idm ⊕ inl) ⊚ g ] † ] ⊚ (idm ⊕ inl)) ⊚ g
≡⟨ ⊚-cong₁ (trans []-⊕ ([]-cong₁ ⊚-unitˡ)) ⟩
[ idm , [ (idm ⊕ inr) ⊚ h , (idm ⊕ inl) ⊚ g ] † ⊚ inl ] ⊚ g
≡⟨ trans (cong (λ w → [ idm , w ⊚ inl ] ⊚ g) helper₁) (cong (λ w → [ idm , w ] ⊚ g) []-inl) ⟩
[ idm , ([ inl , g ] ⊚ h) † ] ⊚ g
∎
where
helper₁ : ∀ {X Y Z : Obj} {g : X ➔ Y + Z} {h : Z ➔ Y + X} →
[ (idm ⊕ inr) ⊚ g , (idm ⊕ inl) ⊚ h ] † ≡ [([ inl , h ] ⊚ g) † , [ idm , ([ inl , h ] ⊚ g) † ] ⊚ h ]
helper₁{X}{Y}{Z}{g = g}{h = h} =
begin
[ (idm ⊕ inr) ⊚ g , (idm ⊕ inl) ⊚ h ] †
≡˘⟨ cong _† $ []-cong₁ $ ⊚-cong₁ $ []-destruct []-inl ⊚-unitʳ ⟩
([ [ (idm ⊕ inl) ⊚ inl , (inr ⊚ inr) ⊚ idm ] ⊚ g , (idm ⊕ inl) ⊚ h ] †)
≡˘⟨ cong _† $ trans ⊚-distrib-[] $
[]-destruct
(trans ⊚-assoc $ ⊚-cong₁ []-⊕)
(trans ⊚-assoc $ ⊚-cong₁ []-inl) ⟩
(([ idm ⊕ inl , inr ⊚ inr ] ⊚ [ (inl ⊕ idm) ⊚ g , inl ⊚ h ]) †)
≡˘⟨ bekić{f = (inl ⊕ idm) ⊚ g}{g = inl ⊚ h} ⟩
[ ([ idm , (inl ⊚ h) † ] ⊚ ((inl ⊕ idm) ⊚ g))† ,
[ idm , ([ idm , (inl ⊚ h) † ] ⊚ ((inl ⊕ idm) ⊚ g))† ] ⊚ ((inl ⊚ h) †) ]
≡⟨ cong2 (λ w₁ w₂ → [ w₁ † , [ idm , w₂ † ] ⊚ ((inl ⊚ h) †) ])
(trans ⊚-assoc $ cong (_⊚ g) $ trans []-⊕ $ []-destruct ⊚-unitˡ ⊚-unitʳ)
(trans ⊚-assoc $ cong (_⊚ g) $ trans []-⊕ $ []-destruct ⊚-unitˡ ⊚-unitʳ) ⟩
[ ([ inl , (inl ⊚ h) † ] ⊚ g) † , [ idm , ([ inl , (inl ⊚ h) † ] ⊚ g) † ] ⊚ ((inl ⊚ h) †) ]
≡⟨ []-destruct
(cong _† $ ⊚-cong₁ $ []-cong₂ inl-h†)
(cong2 (λ w₁ w₂ → [ idm , ([ inl , w₁ ] ⊚ g) † ] ⊚ w₂) inl-h† inl-h†) ⟩
[([ inl , h ] ⊚ g) † , [ idm , ([ inl , h ] ⊚ g)† ] ⊚ h ]
∎
where
inl-h† : (inl ⊚ h) † ≡ h
inl-h† = trans (sym fix) $ trans ⊚-assoc $ trans (⊚-cong₁ []-inl) ⊚-unitˡ
helper₂ : ∀ {X Y Z : Obj} {g : X ➔ Y + Z} {h : Z ➔ Y + X} →
[ (idm ⊕ inr) ⊚ g , (idm ⊕ inl) ⊚ h ] † ⊚ swap ≡ [ (idm ⊕ inr) ⊚ h , (idm ⊕ inl) ⊚ g ] †
helper₂ = trans †-swap $
cong _† $ trans (⊚-cong₂ []-swap) (trans ⊚-distrib-[] $ []-destruct
(trans ⊚-assoc $ ⊚-cong₁ $ trans ⊕-⊕ $ []-destruct (⊚-cong₂ ⊚-unitˡ) $ ⊚-cong₂ []-inl)
(trans ⊚-assoc $ ⊚-cong₁ $ trans ⊕-⊕ $ []-destruct (⊚-cong₂ ⊚-unitˡ) $ ⊚-cong₂ []-inr))
module _ (It : ElgotIteration) {D : Category Ob} {CoC-D : Co-Cartesian D}
{F : Functor D C id} (J : CoC-Functor CoC-D CoC F) where
TotalUniConway→ConwayIteration : TotalUniConway It J → ConwayIteration It
TotalUniConway→ConwayIteration TC =
record {
nat = nat ;
din = din ;
cod = cod
}
where
open TotalUniConway TC