-
Notifications
You must be signed in to change notification settings - Fork 22
/
train.py
239 lines (190 loc) · 9.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import logging
import os
import sys
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from tqdm import tqdm
from eval import eval_net
from unet import UNet
from torch.utils.tensorboard import SummaryWriter
from utils.dataset import BasicDataset
from torch.utils.data import DataLoader, random_split
from diceloss import dice_coef_9cat_loss
from classcount import classcount
torch.autograd.set_detect_anomaly(True)
# Comment/Uncomment to toggle subset for training
dir_img = 'data/img_subset/'
dir_mask = 'data/masks_subset/'
## Comment/Uncomment to toggle subset for training
# dir_img = 'data/training_data/images'
# dir_mask = 'data/training_data/masks'
dir_checkpoint = 'checkpoints/'
def train_net(net,
device,
epochs=5,
batch_size=1,
lr=0.001,
val_percent=0.1,
save_cp=True,
img_scale=0.5):
dataset = BasicDataset(dir_img, dir_mask, img_scale)
n_val = int(len(dataset) * val_percent)
n_train = len(dataset) - n_val
train, val = random_split(dataset, [n_train, n_val],generator=torch.Generator().manual_seed(42))
train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
val_loader = DataLoader(val, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True, drop_last=True)
writer = SummaryWriter(comment=f'LR_{lr}_BS_{batch_size}_SCALE_{img_scale}')
global_step = 0
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_cp}
Device: {device.type}
Images scaling: {img_scale}
''')
optimizer = optim.Adam(net.parameters(), lr=lr, weight_decay=1e-8)
## Uncomment to use an exponential scheduler
# scheduler = optim.lr_scheduler.ExponentialLR(optimizer= optimizer, gamma= 0.96)
## Uncomment the below lines if optimal learning rate technique is to be found as explained in the blog
# lambda1 = lambda epoch: 1.04 ** epoch
# scheduler = optim.lr_scheduler.LambdaLR(optimizer=optimizer, lr_lambda= lambda1)
weights_classes = torch.from_numpy(classcount(train_loader))
weights_classes = weights_classes.to(device=device, dtype=torch.float32)
print("Class Distribution", weights_classes)
if net.n_classes > 1:
criterion = nn.CrossEntropyLoss(weight = weights_classes)
else:
criterion = nn.BCEWithLogitsLoss()
for epoch in range(epochs):
net.train()
epoch_loss = 0
pseudo_batch_loss=0 ##remove when not pruning for lr
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar:
for batch in train_loader:
# Use half precision model for training
net.half()
imgs = batch['image']
true_masks = batch['mask']
assert imgs.shape[1] == net.n_channels, \
f'Network has been defined with {net.n_channels} input channels, ' \
f'but loaded images have {imgs.shape[1]} channels. Please check that ' \
'the images are loaded correctly.'
imgs = imgs.to(device=device, dtype=torch.float16)
mask_type = torch.float32 if net.n_classes == 1 else torch.long ## For cross entropy loss
# mask_type = torch.float32 if net.n_classes == 1 else torch.float ## For Dice Loss
true_masks = true_masks.to(device=device, dtype=mask_type)
masks_pred = net(imgs)
# convert the prediction to float32 for avoiding nan in loss calculation
masks_pred = masks_pred.type(torch.float32)
## Cross Entropy Loss
loss = criterion(masks_pred, true_masks)
epoch_loss += loss.item()
## Dice Loss
# loss=dice_coef_9cat_loss(true_masks,masks_pred)
# epoch_loss += loss.item()
pbar.set_postfix(**{'Epoch Loss': epoch_loss/n_train})
# convert model to full precision for optimization of weights
net.float()
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_value_(net.parameters(), 0.1)
optimizer.step()
pbar.update(imgs.shape[0])
global_step += 1
pseudo_batch_loss += loss.item()
if (global_step) % 16 == 0:
writer.add_scalar('Batch Loss/train',pseudo_batch_loss, global_step)
# writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], global_step)
# scheduler.step()
pseudo_batch_loss = 0
writer.add_scalar('Loss/train', epoch_loss/n_train, epoch+1)
for tag, value in net.named_parameters():
tag = tag.replace('.', '/')
writer.add_histogram('weights/' + tag, value.data.cpu().numpy(), epoch+1)
writer.add_histogram('grads/' + tag, value.grad.data.cpu().numpy(), epoch+1)
val_score = eval_net(net, val_loader, device)
# if (epoch+1) % 10 == 0:
# scheduler.step()
# writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], epoch+1)
if net.n_classes > 1:
logging.info('Validation CE Loss: {}'.format(val_score))
writer.add_scalar('Loss/test', val_score, epoch+1)
else:
logging.info('Validation Dice Coeff: {}'.format(val_score))
writer.add_scalar('Dice/test', val_score, epoch+1)
writer.add_images('images', imgs, epoch+1)
if net.n_classes == 1:
writer.add_images('masks/true', true_masks, epoch+1)
writer.add_images('masks/pred', torch.sigmoid(masks_pred) > 0.5, epoch+1)
if (epoch+1) % 5 == 0:
if save_cp:
try:
os.mkdir(dir_checkpoint)
logging.info('Created checkpoint directory')
except OSError:
pass
torch.save(net.state_dict(),
dir_checkpoint + f'CP_epoch{epoch + 1}.pth')
logging.info(f'Checkpoint {epoch + 1} saved !')
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=5,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=1,
help='Batch size', dest='batchsize')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=4e-5,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
help='Load model from a .pth file')
parser.add_argument('-s', '--scale', dest='scale', type=float, default=1,
help='Downscaling factor of the images')
parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0,
help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
args = get_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
logging.info(f'Using device {device}')
# Change here to adapt to your data
# n_channels=3 for RGB images
# n_classes is the number of probabilities you want to get per pixel
# - For 1 class and background, use n_classes=1
# - For 2 classes, use n_classes=1
# - For N > 2 classes, use n_classes=N
net = UNet(n_channels=3, n_classes=7, bilinear=True)
logging.info(f'Network:\n'
f'\t{net.n_channels} input channels\n'
f'\t{net.n_classes} output channels (classes)\n'
f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling')
if args.load:
net.load_state_dict(
torch.load(args.load, map_location=device)
)
logging.info(f'Model loaded from {args.load}')
net.to(device=device)
# faster convolutions, but more memory
# cudnn.benchmark = True
try:
train_net(net=net,
epochs=args.epochs,
batch_size=args.batchsize,
lr=args.lr,
device=device,
img_scale=args.scale,
val_percent=args.val / 100)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)