-
Notifications
You must be signed in to change notification settings - Fork 49
/
train.py
325 lines (284 loc) · 9.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import glob
import os
import random
import time
import warnings
import imageio
import numpy as np
import taichi as ti
import torch
import torch.nn.functional as F
import tqdm
from datasets.ray_utils import get_rays
from einops import rearrange
from gui import NGPGUI
from modules.distortion import distortion_loss
from modules.networks import NGP, VoxelGrid, MODEL_DICT
from modules.rendering import MAX_SAMPLES, render
from modules.utils import depth2img, save_deployment_model
from opt import get_opts
from torchmetrics import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure
from datasets import dataset_dict
warnings.filterwarnings("ignore")
def taichi_init(args):
taichi_init_args = {"arch": ti.cuda,}
if args.half_opt:
taichi_init_args["half2_vectorization"] = True
ti.init(**taichi_init_args)
def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# set seed
seed = 23
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
hparams = get_opts()
taichi_init(hparams)
if hparams.gpu != -1:
os.environ['CUDA_VISIBLE_DEVICES'] = str(hparams.gpu)
val_dir = 'results/'
# rendering configuration
exp_step_factor = 1 / 256 if hparams.scale > 0.5 else 0.
# occupancy grid update configuration
warmup_steps = 256
update_interval = 16
# datasets
dataset = dataset_dict[hparams.dataset_name]
train_dataset = dataset(
root_dir=hparams.root_dir,
split=hparams.split,
downsample=hparams.downsample,
).to(device)
train_dataset.batch_size = hparams.batch_size
train_dataset.ray_sampling_strategy = hparams.ray_sampling_strategy
test_dataset = dataset(
root_dir=hparams.root_dir,
split='test',
downsample=hparams.downsample,
).to(device)
# TODO: add test set rendering code
# metric
val_psnr = PeakSignalNoiseRatio(
data_range=1
).to(device)
val_ssim = StructuralSimilarityIndexMeasure(
data_range=1
).to(device)
model_type = hparams.model_name
if model_type == 'ngp':
if hparams.deployment:
model_config = {
'scale': hparams.scale,
'pos_encoder_type': 'hash',
'levels': 4,
'feature_per_level': 4,
'base_res': 32,
'max_res': 128,
'log2_T': 21,
'xyz_net_width': 16,
'rgb_net_width': 16,
'rgb_net_depth': 1,
}
else:
model_config = {
'scale': hparams.scale,
'pos_encoder_type': hparams.encoder_type,
'max_res': 1024 if hparams.scale == 0.5 else 4096,
'half_opt': hparams.half_opt,
}
elif model_type == 'svox':
model_config = {
'scale': hparams.scale,
'half_opt': hparams.half_opt,
'sh_degree': hparams.sh_degree,
'grid_size': hparams.grid_size,
'grid_radius': hparams.grid_radius,
'origin_sh': hparams.origin_sh,
'origin_sigma': hparams.origin_sigma
}
# model
# model = NGP(**model_config).to(device)
model = MODEL_DICT[model_type](**model_config).to(device)
# load checkpoint if ckpt path is provided
if hparams.ckpt_path:
state_dict = torch.load(hparams.ckpt_path)
model.load_state_dict(state_dict)
print("Load checkpoint from %s" % hparams.ckpt_path)
model.mark_invisible_cells(
train_dataset.K,
train_dataset.poses,
train_dataset.img_wh,
)
# use large scaler, the default scaler is 2**16
# TODO: investigate why the gradient is small
if hparams.half_opt:
scaler = 2**16
else:
scaler = 2**19
grad_scaler = torch.cuda.amp.GradScaler(scaler)
# optimizer
try:
import apex
optimizer = apex.optimizers.FusedAdam(
model.parameters(),
lr=hparams.lr,
eps=1e-15,
)
except ImportError:
print("Failed to import apex FusedAdam, use torch Adam instead.")
optimizer = torch.optim.Adam(
model.parameters(),
hparams.lr,
eps=1e-15,
)
# scheduler
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
hparams.max_steps,
hparams.lr/30
)
# training loop
tic = time.time()
for step in range(hparams.max_steps+1):
model.train()
i = torch.randint(0, len(train_dataset), (1,)).item()
data = train_dataset[i]
direction = data['direction']
pose = data['pose']
with torch.autocast(device_type='cuda', dtype=torch.float16):
if step % update_interval == 0:
model.update_density_grid(
0.01 * MAX_SAMPLES / 3**0.5,
warmup=step < warmup_steps,
)
# get rays
rays_o, rays_d = get_rays(direction, pose)
# render image
results = render(
model,
rays_o,
rays_d,
exp_step_factor=exp_step_factor,
)
loss = F.mse_loss(results['rgb'], data['rgb'])
if hparams.distortion_loss_w > 0:
loss += hparams.distortion_loss_w * distortion_loss(results).mean()
optimizer.zero_grad()
grad_scaler.scale(loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
scheduler.step()
if step % 1000 == 0:
elapsed_time = time.time() - tic
with torch.no_grad():
mse = F.mse_loss(results['rgb'], data['rgb'])
psnr = -10.0 * torch.log(mse) / np.log(10.0)
print(
f"elapsed_time={elapsed_time:.2f}s | "
f"step={step} | psnr={psnr:.2f} | "
f"loss={loss:.6f} | "
# number of rays
f"rays={len(data['rgb'])} | "
# ray marching samples per ray (occupied space on the ray)
f"rm_s={results['rm_samples'] / len(data['rgb']):.1f} | "
# volume rendering samples per ray
# (stops marching when transmittance drops below 1e-4)
f"vr_s={results['vr_samples'] / len(data['rgb']):.1f} | "
)
if hparams.deployment:
save_deployment_model(
model=model,
dataset=train_dataset,
save_dir=hparams.deployment_model_path,
)
# check if val_dir exists, otherwise create it
if not os.path.exists(val_dir):
os.makedirs(val_dir)
# save model
torch.save(
model.state_dict(),
os.path.join(val_dir, 'model.pth'),
)
# test loop
progress_bar = tqdm.tqdm(total=len(test_dataset), desc=f'evaluating: ')
with torch.no_grad():
model.eval()
w, h = test_dataset.img_wh
directions = test_dataset.directions
test_psnrs = []
test_ssims = []
for test_step in range(len(test_dataset)):
progress_bar.update()
test_data = test_dataset[test_step]
rgb_gt = test_data['rgb']
poses = test_data['pose']
with torch.autocast(device_type='cuda', dtype=torch.float16):
# get rays
rays_o, rays_d = get_rays(directions, poses)
# render image
results = render(
model,
rays_o,
rays_d,
test_time=True,
exp_step_factor=exp_step_factor,
)
# TODO: get rid of this
rgb_pred = rearrange(results['rgb'], '(h w) c -> 1 c h w', h=h)
rgb_gt = rearrange(rgb_gt, '(h w) c -> 1 c h w', h=h)
# get psnr
val_psnr(rgb_pred, rgb_gt)
test_psnrs.append(val_psnr.compute())
val_psnr.reset()
# get ssim
val_ssim(rgb_pred, rgb_gt)
test_ssims.append(val_ssim.compute())
val_ssim.reset()
# save test image to disk
if test_step == 0:
test_idx = test_data['img_idxs']
# TODO: get rid of this
rgb_pred = rearrange(
results['rgb'].cpu().numpy(),
'(h w) c -> h w c',
h=h
)
rgb_pred = (rgb_pred * 255).astype(np.uint8)
depth = depth2img(
rearrange(results['depth'].cpu().numpy(), '(h w) -> h w', h=h))
imageio.imsave(
os.path.join(
val_dir,
f'rgb_{test_idx:03d}.png'
),
rgb_pred
)
imageio.imsave(
os.path.join(
val_dir,
f'depth_{test_idx:03d}.png'
),
depth
)
progress_bar.close()
test_psnr_avg = sum(test_psnrs) / len(test_psnrs)
test_ssim_avg = sum(test_ssims) / len(test_ssims)
print(f"evaluation: psnr_avg={test_psnr_avg} | ssim_avg={test_ssim_avg}")
if hparams.gui:
ti.reset()
hparams.ckpt_path = os.path.join(val_dir, 'model.pth')
taichi_init(hparams)
dataset = dataset_dict[hparams.dataset_name](
root_dir=hparams.root_dir,
downsample=hparams.downsample,
read_meta=True,
)
NGPGUI(
hparams,
model_config,
dataset.K,
dataset.img_wh,
dataset.poses
).render()
if __name__ == '__main__':
main()