Skip to content

Latest commit

 

History

History
60 lines (41 loc) · 3.1 KB

README.md

File metadata and controls

60 lines (41 loc) · 3.1 KB

Bipartite Partial Configuration Model for Python

The Bipartite Partial Configuration Model (BiPCM) is a statistical null model for binary bipartite networks. It offers an unbiased method for
analyzing node similarities and obtaining statistically validated monopartite projections [Saracco2016].

The BiPCM is related to the Bipartite Configuration Model (BiCM) [Saracco2015], but imposes only constraints on the degrees of one bipartite node layer. It belongs to a series of entropy-based null model for binary bipartite networks, see also

  • BiCM - Bipartite Configuration Model
  • BiRG - Bipartite Random Graph

Please consult the original articles for details about the underlying methods and applications to user-movie and international trade databases [Saracco2016, Straka2016].

Author

Mika J. Straka

Version and Documentation

The newest version of the module can be found on https://github.com/tsakim/bipcm.

The complete documentation is available at http://bipcm.readthedocs.io/ and in the file docs/BiPCM_manual.pdf

How to cite

If you use the bipcm module, please cite its location on Github https://github.com/tsakim/bipcm and the original article [Saracco2016].

References

[Saracco2015] F. Saracco, R. Di Clemente, A. Gabrielli, T. Squartini, Randomizing bipartite networks: the case of the World Trade Web, Scientific Reports 5, 10595 (2015).

[Saracco2016] F. Saracco, M. J. Straka, R. Di Clemente, A. Gabrielli, G. Caldarelli, T. Squartini, Inferring monopartite projections of bipartite networks: an entropy-based approach, arXiv preprint arXiv:1607.02481

[Straka2016] M. J. Straka, F. Saracco, G. Caldarelli, Product Similarities in International Trade from Entropy-based Null Models, Complex Networks 2016, 130-132 (11 2016), ISBN 978-2-9557050-1-8


Copyright (c) 2015-2017 Mika J. Straka