-
Notifications
You must be signed in to change notification settings - Fork 2
/
object_from_video_detection.py
36 lines (32 loc) · 1.06 KB
/
object_from_video_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import cv2
from darkflow.net.build import TFNet
import numpy as np
import time
option = {
'model': 'cfg/yolo.cfg',
'load': 'bin/yolo.weights',
'threshold': 0.15,
'gpu': 1.0
}
tfnet = TFNet(option)
capture = cv2.VideoCapture('cruise_20_fps.avi')
colors = [tuple(255 * np.random.rand(3)) for i in range(5)]
while (capture.isOpened()):
stime = time.time()
ret, frame = capture.read()
results = tfnet.return_predict(frame)
if ret:
for color, result in zip(colors, results):
tl = (result['topleft']['x'], result['topleft']['y'])
br = (result['bottomright']['x'], result['bottomright']['y'])
label = result['label']
frame = cv2.rectangle(frame, tl, br, color, 7)
frame = cv2.putText(frame, label, tl, cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 0), 2)
cv2.imshow('frame', frame)
print('FPS {:.1f}'.format(1 / (time.time() - stime)))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
capture.release()
cv2.destroyAllWindows()
break