forked from lm-sys/FastChat
-
Notifications
You must be signed in to change notification settings - Fork 13
/
dummy_mtbench.py
314 lines (259 loc) · 10.1 KB
/
dummy_mtbench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import numpy as np
import wandb
import argparse
import json
import os
import random
import time
from types import SimpleNamespace
import hashlib
import datetime
import shortuuid
import torch
from tqdm import tqdm
# default configs
default_config = SimpleNamespace(
# for gen_model_answer
model_path='Open-Orca/Mistral-7B-OpenOrca',
model_id=None,
bench_name='japanese_mt_bench',
question_begin=None,
question_end=None,
answer_file=None,
max_new_token=1024,
num_choices=1,
num_gpus_per_model=1,
num_gpus_total=1,
max_gpu_memory=None,
dtype=None,
# for gen_judgment
judge_file="fastchat/llm_judge/data/judge_prompts.jsonl",
judge_model="gpt-4",
baseline_model="gpt-3.5-turbo",
mode="single",
model_list=None,
parallel=1,
first_n=None,
# for conv template # added
custom_conv_template=False,
conv_name="custom",
conv_system_message="以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。",
conv_roles="('指示', '応答')",
conv_sep="\n\n### ",
conv_stop_token_ids="[2]",
conv_stop_str="###",
conv_role_message_separator=": \n",
conv_role_only_separator=": \n",
)
def evaluate(run_id=None, config=default_config):
# create hash and append it to the model_id in order to avoid duplicated id
mnaum_data = str(datetime.datetime.now())
encoded_data = mnaum_data.encode()
hash_object = hashlib.sha256(encoded_data)
hashed_string = hash_object.hexdigest()
if config.model_id == None:
config.model_id = f'{config.model_path.replace("/", "--")}_hash_{hashed_string}'
# initialize wandb run
if run_id==None:
run = wandb.init(project='yuya-test-llm', config=config)
config = run.config
else:
run = wandb.init(project='yuya-test-llm', id=run_id, resume="allow")
config = run.config
from fastchat.llm_judge.common import load_questions, temperature_config
from fastchat.model import load_model, get_conversation_template
from fastchat.utils import str_to_torch_dtype
from fastchat.llm_judge.gen_model_answer import get_conversation_template, get_model_answers, load_model, load_questions, reorg_answer_file, run_eval, str_to_torch_dtype
from fastchat.llm_judge.gen_judgment import check_data, get_model_list, load_judge_prompts, load_model_answers, load_questions, make_judge_pairwise, make_judge_single, make_match, make_match_all_pairs, make_match_single, play_a_match_pair, play_a_match_single
if config.num_gpus_total // config.num_gpus_per_model > 1:
import ray
ray.init()
question_file = f"fastchat/llm_judge/data/{config.bench_name}/question.jsonl"
if config.answer_file:
answer_file = config.answer_file
else:
answer_file = f"fastchat/llm_judge/data/{config.bench_name}/model_answer/{config.model_id}.jsonl"
print(f"Output to {answer_file}")
# 1. generate model answers
run_eval(
model_path=config.model_path,
model_id=config.model_id,
question_file=question_file,
question_begin=config.question_begin,
question_end=config.question_end,
answer_file=answer_file,
max_new_token=config.max_new_token,
num_choices=config.num_choices,
num_gpus_per_model=config.num_gpus_per_model,
num_gpus_total=config.num_gpus_total,
max_gpu_memory=config.max_gpu_memory,
dtype=str_to_torch_dtype(config.dtype),
)
# 2. evaluate outputs
import argparse
from concurrent.futures import ThreadPoolExecutor
import json
import numpy as np
from tqdm import tqdm
from fastchat.llm_judge.common import (
load_questions,
load_model_answers,
load_judge_prompts,
check_data,
play_a_match_pair,
play_a_match_single,
get_model_list,
Judge,
MatchPair,
MatchSingle,
NEED_REF_CATS,
)
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
## file path
question_file = f"fastchat/llm_judge/data/{config.bench_name}/question.jsonl"
answer_dir = f"fastchat/llm_judge/data/{config.bench_name}/model_answer"
ref_answer_dir = f"fastchat/llm_judge/data/{config.bench_name}/reference_answer"
## Load questions
questions = load_questions(question_file, None, None)
## Load answers
model_answers = load_model_answers(answer_dir)
model_answers = {config.model_id: model_answers[config.model_id]}
ref_answers = load_model_answers(ref_answer_dir)
## Load judge
judge_prompts = load_judge_prompts(config.judge_file)
if config.first_n:
questions = questions[: config.first_n]
if config.model_list is None:
models = [config.model_id] #get_model_list(answer_dir)
else:
models = config.model_list
if config.mode == "single":
judges = make_judge_single(config.judge_model, judge_prompts)
play_a_match_func = play_a_match_single
output_file = (
f"fastchat/llm_judge/data/{config.bench_name}/model_judgment/{config.judge_model}_single.jsonl"
)
make_match_func = make_match_single
baseline_model = None
else:
judges = make_judge_pairwise(config.judge_model, judge_prompts)
play_a_match_func = play_a_match_pair
output_file = (
f"fastchat/llm_judge/data/{config.bench_name}/model_judgment/{config.judge_model}_pair.jsonl"
)
if config.mode == "pairwise-all":
make_match_func = make_match_all_pairs
baseline_model = None
else:
make_match_func = make_match
baseline_model = config.baseline_model
check_data(questions, model_answers, ref_answers, models, judges)
question_math = [q for q in questions if q["category"] in NEED_REF_CATS]
question_default = [q for q in questions if q["category"] not in NEED_REF_CATS]
# Make matches
matches = []
matches += make_match_func(
question_default, models, model_answers, judges["default"], baseline_model
)
matches += make_match_func(
question_math,
models,
model_answers,
judges["math"],
baseline_model,
ref_answers,
)
matches += make_match_func(
question_default,
models,
model_answers,
judges["default-mt"],
baseline_model,
multi_turn=True,
)
matches += make_match_func(
question_math,
models,
model_answers,
judges["math-mt"],
baseline_model,
ref_answers,
multi_turn=True,
)
match_stat = {}
match_stat["bench_name"] = config.bench_name
match_stat["mode"] = config.mode
match_stat["judge"] = config.judge_model
match_stat["baseline"] = baseline_model
match_stat["model_list"] = models
match_stat["total_num_questions"] = len(questions)
match_stat["total_num_matches"] = len(matches)
match_stat["output_path"] = output_file
# Show match stats and prompt enter to continue
print("Stats:")
print(json.dumps(match_stat, indent=4))
#input("Press Enter to confirm...")
# Play matches
if config.parallel == 1:
for match in tqdm(matches):
play_a_match_func(match, output_file=output_file)
else:
def play_a_match_wrapper(match):
play_a_match_func(match, output_file=output_file)
np.random.seed(0)
np.random.shuffle(matches)
with ThreadPoolExecutor(config.parallel) as executor:
for match in tqdm(
executor.map(play_a_match_wrapper, matches), total=len(matches)
):
pass
# 3. consolidate results and log as wandb.Table
import numpy as np
import pandas as pd
# load questions
df_question = pd.read_json(question_file, lines=True)
# load answers
df_answer = pd.read_json(f"fastchat/llm_judge/data/{config.bench_name}/model_answer/{config.model_id}.jsonl", lines=True)
df_answer = df_answer[df_answer.model_id == config.model_id]
df_answer = df_answer.sort_values(['question_id'])
# load judge results
df_judge = pd.read_json(output_file, lines=True)
df_judge = df_judge[df_judge.model == config.model_id]
df_judge.model = df_judge.model.str.replace("--", "/")
df_judge['hash'] = df_judge.model.apply(lambda x: x.split('_hash_')[-1])
df_judge['model'] = df_judge.model.apply(lambda x: x.split('_hash_')[0])
df_judge = df_judge.sort_values(['question_id', 'turn'])
## merge tables
df_judge["question"] = np.nan
df_judge.loc[df_judge.turn==1, 'question'] = df_question.turns.apply(lambda x: x[0]).values
df_judge.loc[df_judge.turn==2, 'question'] = df_question.turns.apply(lambda x: x[1]).values
df_judge['answer'] = np.nan
df_judge.loc[df_judge.turn==1, 'answer'] = df_answer.choices.apply(lambda x: x[0][ 'turns'][0]).values
df_judge.loc[df_judge.turn==2, 'answer'] = df_answer.choices.apply(lambda x: x[0][ 'turns'][1]).values
df_judge = df_judge.merge(df_answer[['question_id', 'answer_id']], on='question_id', how='left')
df_judge = df_judge.merge(df_question[['question_id', 'category']], on='question_id', how='left')
## clean dataframe up
use_col = [
'question_id', 'category', 'answer_id', 'model', 'question',
'answer', 'judge', 'user_prompt', 'judgment',
'score', 'turn', 'tstamp'
]
df_judge = df_judge[use_col]
table_log = wandb.Table(dataframe=df_judge)
# table for radar chart
df_summary = df_judge.groupby(['category'], as_index=False).score.mean()
table_radar = wandb.Table(dataframe=df_summary)
## table for LB
columns = ['model_name'] + df_summary.category.values.tolist()
data = [[config.model_id.replace("--", "/").split('_hash_')[0]] + df_summary.score.values.tolist()]
table_metric = wandb.Table(data=data, columns=columns)
run.log({
"log_table":table_log,
"metric_table":table_metric,
"radar_table":table_radar,
})
run.finish()
return run_id
if __name__ == "__main__":
evaluate()