forked from DeMoriarty/custom_matmul_kernels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
minbmm.py
149 lines (132 loc) · 3.91 KB
/
minbmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import cupy as cp
import numpy as np
import math
from custom_kernel import CustomKernel
class MinBMMCUDA(CustomKernel):
def __init__(self, patch_m=4, patch_n=4, distance="inner"):
super(MinBMMCUDA, self).__init__()
self.patch_m = patch_m
self.patch_n = patch_n
if distance == "inner":
dist_fn = "madd"
elif distance in ["l2", "euclidean"]:
dist_fn = "squared_l2"
elif distance in ["l1", "manhattan"]:
dist_fn = "l1"
else:
ValueError("Unrecognized distance type")
self.distance = distance
with open("kernels/bmm_helpers.cu", "r") as f:
helpers = f.read()
with open("kernels/minbmm.cu",'r') as f: ###
self.kernel = helpers + f.read()
self.kernel = (self.kernel
.replace("_PM_", str(self.patch_m))
.replace("_PN_", str(self.patch_n))
.replace("__DISTANCE_FN__", dist_fn)
)
self._fn_tt = cp.RawKernel(
code=self.kernel,
name="min_bmm_tt",
backend='nvcc',
options=('--maxrregcount=128', '--use_fast_math')
)
self._fn_nn = cp.RawKernel(
code=self.kernel,
name="min_bmm_nn",
backend='nvcc',
options=(
'--maxrregcount=128',
'--use_fast_math',
#'-Xptxas',
#'-dlcm=cg',
)
)
# print(self._fn_nn.attributes)
self._fn_tn = cp.RawKernel(
code=self.kernel,
name="min_bmm_tn",
backend='nvcc',
options=('--maxrregcount=128', '--use_fast_math')
)
self._fn_nt = cp.RawKernel(
code=self.kernel,
name="min_bmm_nt",
backend='nvcc',
options=('--maxrregcount=128', '--use_fast_math')
)
def get_mode(self, A, B):
mode = [None, None]
if A.stride()[-1] == 1:
mode[0] = "n"
elif A.stride()[-2] == 1:
mode[0] = "t"
if B.stride()[-1] == 1:
mode[1] = "n"
elif B.stride()[-2] == 1:
mode[1] = "t"
return "".join(mode)
def __call__(self, A, B, dim=1):
"""
Performs C = min(f(A) @ g(B)), argmin(f(A) @ g(B))
A: torch.Tensor, shape : [l, m, k]
B: torch.Tensor, shape : [l, k, n]
returns C: torch.Tensor, shape : [l, m, n]
"""
assert len(A.shape) == len(B.shape)
if len(A.shape) == 2 and len(B.shape) == 2:
A = A[None]
B = B[None]
dim += 1
two_dimentional = True
elif len(A.shape) == 3 and len(B.shape) == 3:
two_dimentional = False
else:
raise ValueError("A and B need to be 2d or 3d")
assert A.shape[0] == B.shape[0]
assert A.shape[2] == B.shape[1]
assert A.dtype == B.dtype
assert A.dtype in [torch.float, torch.half]
assert A.device.type == B.device.type == "cuda"
assert dim in [1, 2]
mode = self.get_mode(A, B)
if mode == "nn":
kernel_fn = self._fn_nn
elif mode == "nt":
kernel_fn = self._fn_nt
elif mode == "tn":
kernel_fn = self._fn_tn
elif mode == "tt":
kernel_fn = self._fn_tt
l, m, k = A.shape
l, k, n = B.shape
if dim == 1:
values = torch.empty([l, n], device="cuda:0", dtype=A.dtype)
indices = torch.empty([l, n], device="cuda:0", dtype=torch.int64)
elif dim == 2:
values = torch.empty([l, m], device="cuda:0", dtype=A.dtype)
indices = torch.empty([l, m], device="cuda:0", dtype=torch.int64)
values.fill_(float("inf"))
threads_per_block = (256,)
#blocks_per_grid = (math.ceil(n/128), math.ceil(m/128), l)
n_ = math.ceil(n/(128*self.patch_n))
m_ = math.ceil(m/(128*self.patch_m))
blocks_per_grid = (self.patch_n*self.patch_m, n_ * m_, l)
# print(blocks_per_grid, m_, n_)
kernel_fn(
grid=blocks_per_grid,
block=threads_per_block,
args=[
A.data_ptr(),
B.data_ptr(),
values.data_ptr(),
indices.data_ptr(),
m, n, k, dim,
],
stream=self.stream
)
if two_dimentional:
indices = indices[0]
values = values[0]
return values, indices