forked from panzhang83/catn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
qc.py
107 lines (97 loc) · 5.28 KB
/
qc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
dsfad
"""
#import torch
import numpy as np
import math
import networkx as nx
import string
import time
import sys
from tensor_network_np import Tensor_Network_np
from peps import PEPS
import convert
if __name__ == '__main__':
import argparse
# torch.set_num_threads(8)
print("analysing args")
t_begin = time.time()
parser = argparse.ArgumentParser(description='')
parser.add_argument("-n", type=int, default=30, help="number of nodes")
parser.add_argument("-lx", type=int, default=-1, help="Lx")
parser.add_argument("-ly", type=int, default=-1, help="Ly")
parser.add_argument("-k", type=int, default=3, help="degree, integer")
parser.add_argument("-c", type=float, default=3.0, help="average degree in gnp")
parser.add_argument("-beta", type=float, default=0.8, help="beta")
parser.add_argument("-gamma", type=float, default=1.0, help="external fields strength")
parser.add_argument("-cutoff", type=float, default=1.0e-14, help="Cut off")
parser.add_argument("-maxdim", type=int, default=30, help="maximum dimension of intermediate tensor")
parser.add_argument("-seed", type=int, default=1, help="seed")
parser.add_argument("-seed2", type=int, default=-1, help="seed2")
parser.add_argument("-bins", type=int, default=20, help="number of output")
parser.add_argument("-graph", type=str, default='qft20', help="graph")
parser.add_argument("-Jij", type=str, default='ferro', choices=['ferro','rand', 'randn','sk'])
parser.add_argument("-field", type=str, default='zero', choices=['one','rand', 'randn'])
parser.add_argument("-node", type=str, default='np',choices=['mps','peps','np'], help="node representation, raw or mps")
parser.add_argument("-cuda", type=int, default=-1, help="GPU #")
parser.add_argument("-verbose", type=int, default=-1, help="verbose")
parser.add_argument("-raw", action='store_true', help="Node type set to 'raw'")
parser.add_argument("-Dmax", type=int, default=12, help="Maximum physical bond dimension of the tensors. With Dmax<0, contraction will be exact")
parser.add_argument("-chi", type=int, default=32, help="Maximum virtual bond dimension of the mps.")
parser.add_argument("-norm", type=int, default=1, choices=[0,1,2],help="normalization methods")
parser.add_argument("-svdopt", type=int,default=1,choices=[0,1], help="optimize svd of two 3-way tensors")
parser.add_argument("-select", type=int,default=1,choices=[0,1,2], help="Heuristic for selecting edges in contractions")
parser.add_argument("-reverse", type=int,default=1,choices=[0,1], help="whether reverse the mps?")
parser.add_argument("-swapopt", type=int,default=1,choices=[0,1], help="optimize swap() operations")
parser.add_argument("-fvsenum", action='store_true', help="compute exact solution by enumerating configurations of feedback set")
args = parser.parse_args()
# device = torch.device("cpu" if args.cuda<0 else "cuda:"+str(args.cuda))
if(args.seed2<0):
args.seed2 = args.seed
dirname = './'
# dirname = '/home/pan/work/gitlab/qc/tensorqc/'
# if(args.node !="peps"):
# name= dirname + 'graphs/'+args.graph
# else:
# name= '/home/pan/work/gitlab/qc/tensorqc/graphs/'+args.graph+'-rank4'
name= dirname + 'graphs/'+args.graph
print("graph",name)
tensors, labels_einsum = convert.convert_to_incidence_list(name)
labels = convert.incidence_list_to_adjacency_list(labels_einsum)
# fname = name+".labels.dat"
# lines = open(fname,"r").readlines()
# lines = [i.split() for i in lines]
# print(lines)
# dic = ['0','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
# print(labels_einsum)
# seq = ''
# for i in labels_einsum:
# for j in i:
# seq = seq + dic[j]
# seq = seq+','
# seq = seq[:-1]
# print([[list(tensors[i].shape),seq.split(",")[i]] for i in range(len(tensors))])
# print(seq)
# psi = np.einsum(seq,*tensors)
#
# print("psi=",psi,"prob=",np.abs(psi)**2)
# input("***")
# torch.manual_seed(args.seed)
svdopt = True if args.svdopt==1 else False
reverse = True if args.reverse==1 else False
swapopt = True if args.swapopt==1 else False
# print(labels)
print("init peps")
if(args.lx>0 and args.ly<0):
args.ly=args.lx
if args.node == "peps" or args.node == "exact":
tn = PEPS(args.lx,args.ly,tensors,labels,seed=args.seed2,mydevice='cpu',maxdim=args.maxdim,verbose=args.verbose,Dmax=args.Dmax,chi=args.chi, node_type = args.node,cutoff=args.cutoff)
elif args.node == "np" or args.node=="mps":
tn = Tensor_Network_np(tensors,labels,seed=args.seed2,mydevice='cpu',maxdim=args.maxdim,verbose=args.verbose,Dmax=args.Dmax,chi=args.chi, node_type = args.node,norm_method = args.norm,svdopt = svdopt, swapopt = swapopt,reverse=reverse,bins = args.bins,cutoff=args.cutoff,select=args.select)
t0 = time.time()
lnZ_tn,error,psi = tn.contraction()
print("lnZ_tn = {:.15g}, prob={:.8g}, svd_error = {:.15g}, time: {:.2g} Sec. maxdim_inter={:d}".format(lnZ_tn.item(),(np.exp(lnZ_tn)**2).item(),np.linalg.norm(error), time.time() - t0,int(tn.maxdim_intermediate)))
psi=np.exp(lnZ_tn)*psi
print("psi=",psi,"prob=",np.abs(psi)**2)
print("time",time.time()-t_begin,"Seconds")
print("CMD: "," ".join(["python"]+sys.argv))