-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_recogn.py
50 lines (36 loc) · 1.46 KB
/
face_recogn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# OpenCV program to detect face in real time
# import libraries of python OpenCV
# where its functionality resides
import cv2
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
# capture frames from a camera
cap = cv2.VideoCapture(0)
# loop runs if capturing has been initialized.
while 1:
# reads frames from a camera
ret, img = cap.read()
# convert to gray scale of each frames
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detects faces of different sizes in the input image
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
# To draw a rectangle in a face
cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
# Detects eyes of different sizes in the input image
eyes = eye_cascade.detectMultiScale(roi_gray)
#To draw a rectangle in eyes
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,127,255),2)
# Display an image in a window
cv2.imshow('img',img)
# Wait for Esc key to stop
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# Close the window
cap.release()
# De-allocate any associated memory usage
cv2.destroyAllWindows()