Skip to content

Commit

Permalink
BayDAG Contribution #11: School Escorting Estimation Updates (#777)
Browse files Browse the repository at this point in the history
* School escorting estimation updates

Most changes are needed to avoid crash if estimation run actually had no school escorting in the input data

* blacken

* updating to work with Pydantic and State object

* adding missed columns necessary for no school escorting

* blacken

* handling zero escorting cases

* removing duplicate code
  • Loading branch information
dhensle authored Apr 4, 2024
1 parent bb437b3 commit 739c2e4
Show file tree
Hide file tree
Showing 2 changed files with 118 additions and 40 deletions.
141 changes: 101 additions & 40 deletions activitysim/abm/models/school_escorting.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,14 @@ def determine_escorting_participants(
& (persons.cdap_activity == "M")
]
households_with_escortees = escortees["household_id"]
choosers = choosers[choosers.index.isin(households_with_escortees)]
if len(households_with_escortees) == 0:
logger.warning("No households with escortees found!")
else:
tot_households = len(choosers)
choosers = choosers[choosers.index.isin(households_with_escortees)]
logger.info(
f"Proceeding with {len(choosers)} households with escortees out of {tot_households} total households"
)

# can specify different weights to determine chaperones
persontype_weight = model_settings.PERSON_WEIGHT
Expand Down Expand Up @@ -140,7 +147,7 @@ def add_prev_choices_to_choosers(
stage_alts,
how="left",
left_on=escorting_choice,
right_on=stage_alts.index.name,
right_index=True,
)
.set_index("household_id")
)
Expand Down Expand Up @@ -216,8 +223,12 @@ def create_school_escorting_bundles_table(choosers, tours, stage):
bundles : pd.DataFrame
one school escorting bundle per row
"""
# making a table of bundles
choosers = choosers.reset_index()
# want to keep household_id in columns, which is already there if running in estimation mode
if "household_id" in choosers.columns:
choosers = choosers.reset_index(drop=True)
else:
choosers = choosers.reset_index()
# creating a row for every school escorting bundle
choosers = choosers.loc[choosers.index.repeat(choosers["nbundles"])]

bundles = pd.DataFrame()
Expand Down Expand Up @@ -460,7 +471,11 @@ def school_escorting(

trace_hh_id = state.settings.trace_hh_id

alts = simulate.read_model_alts(state, model_settings.ALTS, set_index="Alt")
# FIXME setting index as "Alt" causes crash in estimation mode...
# happens in joint_tour_frequency_composition too!
# alts = simulate.read_model_alts(state, model_settings.ALTS, set_index="Alt")
alts = simulate.read_model_alts(state, model_settings.ALTS, set_index=None)
alts.index = alts["Alt"].values

choosers, participant_columns = determine_escorting_participants(
households_merged, persons, model_settings
Expand All @@ -478,7 +493,9 @@ def school_escorting(
for stage_num, stage in enumerate(school_escorting_stages):
stage_trace_label = trace_label + "_" + stage
estimator = estimation.manager.begin_estimation(
state, "school_escorting_" + stage
state,
model_name="school_escorting_" + stage,
bundle_name="school_escorting",
)

model_spec_raw = state.filesystem.read_model_spec(
Expand Down Expand Up @@ -533,9 +550,26 @@ def school_escorting(

if estimator:
estimator.write_model_settings(model_settings, model_settings_file_name)
estimator.write_spec(model_settings)
estimator.write_coefficients(coefficients_df, model_settings)
estimator.write_spec(model_settings, tag=stage.upper() + "_SPEC")
estimator.write_coefficients(
coefficients_df, file_name=stage.upper() + "_COEFFICIENTS"
)
estimator.write_choosers(choosers)
estimator.write_alternatives(alts, bundle_directory=True)

# FIXME #interaction_simulate_estimation_requires_chooser_id_in_df_column
# shuold we do it here or have interaction_simulate do it?
# chooser index must be duplicated in column or it will be omitted from interaction_dataset
# estimation requires that chooser_id is either in index or a column of interaction_dataset
# so it can be reformatted (melted) and indexed by chooser_id and alt_id
assert choosers.index.name == "household_id"
assert "household_id" not in choosers.columns
choosers["household_id"] = choosers.index

# FIXME set_alt_id - do we need this for interaction_simulate estimation bundle tables?
estimator.set_alt_id("alt_id")

estimator.set_chooser_id(choosers.index.name)

log_alt_losers = state.settings.log_alt_losers

Expand Down Expand Up @@ -580,47 +614,74 @@ def school_escorting(

if stage_num >= 1:
choosers["Alt"] = choices
choosers = choosers.join(alts, how="left", on="Alt")
choosers = choosers.join(alts.set_index("Alt"), how="left", on="Alt")
bundles = create_school_escorting_bundles_table(
choosers[choosers["Alt"] > 1], tours, stage
)
escort_bundles.append(bundles)

escort_bundles = pd.concat(escort_bundles)
escort_bundles["bundle_id"] = (
escort_bundles["household_id"] * 10
+ escort_bundles.groupby("household_id").cumcount()
+ 1
)
escort_bundles.sort_values(
by=["household_id", "school_escort_direction"],
ascending=[True, False],
inplace=True,
)

school_escort_tours = school_escort_tours_trips.create_pure_school_escort_tours(
state, escort_bundles
)
chauf_tour_id_map = {
v: k for k, v in school_escort_tours["bundle_id"].to_dict().items()
}
escort_bundles["chauf_tour_id"] = np.where(
escort_bundles["escort_type"] == "ride_share",
escort_bundles["first_mand_tour_id"],
escort_bundles["bundle_id"].map(chauf_tour_id_map),
)
assert (
escort_bundles["chauf_tour_id"].notnull().all()
), f"chauf_tour_id is null for {escort_bundles[escort_bundles['chauf_tour_id'].isna()]}. Check availability conditions."
# Only want to create bundles and tours and trips if at least one household has school escorting
if len(escort_bundles) > 0:
escort_bundles["bundle_id"] = (
escort_bundles["household_id"] * 10
+ escort_bundles.groupby("household_id").cumcount()
+ 1
)
escort_bundles.sort_values(
by=["household_id", "school_escort_direction"],
ascending=[True, False],
inplace=True,
)

tours = school_escort_tours_trips.add_pure_escort_tours(tours, school_escort_tours)
tours = school_escort_tours_trips.process_tours_after_escorting_model(
state, escort_bundles, tours
)
school_escort_tours = school_escort_tours_trips.create_pure_school_escort_tours(
state, escort_bundles
)
chauf_tour_id_map = {
v: k for k, v in school_escort_tours["bundle_id"].to_dict().items()
}
escort_bundles["chauf_tour_id"] = np.where(
escort_bundles["escort_type"] == "ride_share",
escort_bundles["first_mand_tour_id"],
escort_bundles["bundle_id"].map(chauf_tour_id_map),
)

school_escort_trips = school_escort_tours_trips.create_school_escort_trips(
escort_bundles
)
assert (
escort_bundles["chauf_tour_id"].notnull().all()
), f"chauf_tour_id is null for {escort_bundles[escort_bundles['chauf_tour_id'].isna()]}. Check availability conditions."

tours = school_escort_tours_trips.add_pure_escort_tours(
tours, school_escort_tours
)
tours = school_escort_tours_trips.process_tours_after_escorting_model(
state, escort_bundles, tours
)
school_escort_trips = school_escort_tours_trips.create_school_escort_trips(
escort_bundles
)

else:
# create empty school escort tours & trips tables to be used downstream
tours["school_esc_outbound"] = pd.NA
tours["school_esc_inbound"] = pd.NA
tours["school_escort_direction"] = pd.NA
tours["next_pure_escort_start"] = pd.NA
school_escort_tours = pd.DataFrame(columns=tours.columns)
trip_cols = [
"household_id",
"person_id",
"tour_id",
"trip_id",
"outbound",
"depart",
"purpose",
"destination",
"escort_participants",
"chauf_tour_id",
"primary_purpose",
]
school_escort_trips = pd.DataFrame(columns=trip_cols)

school_escort_trips["primary_purpose"] = school_escort_trips[
"primary_purpose"
Expand Down
17 changes: 17 additions & 0 deletions activitysim/abm/models/util/school_escort_tours_trips.py
Original file line number Diff line number Diff line change
Expand Up @@ -405,6 +405,19 @@ def merge_school_escort_trips_into_pipeline(state: workflow.State):
tours = state.get_dataframe("tours")
trips = state.get_dataframe("trips")

# checking to see if there are school escort trips to merge in
if len(school_escort_trips) == 0:
# if no trips, fill escorting columns with NA
trips[
[
"escort_participants",
"school_escort_direction",
"school_escort_trip_id",
]
] = pd.NA
state.add_table("trips", trips)
return trips

# want to remove stops if school escorting takes place on that half tour so we can replace them with the actual stops
out_se_tours = tours[
tours["school_esc_outbound"].isin(["pure_escort", "ride_share"])
Expand Down Expand Up @@ -643,6 +656,10 @@ def force_escortee_tour_modes_to_match_chauffeur(state: workflow.State, tours):
# Does it even matter if trip modes are getting matched later?
escort_bundles = state.get_dataframe("escort_bundles")

if len(escort_bundles) == 0:
# do not need to do anything if no escorting
return tours

# grabbing the school tour ids for each school escort bundle
se_tours = escort_bundles[["school_tour_ids", "chauf_tour_id"]].copy()
# merging in chauffeur tour mode
Expand Down

0 comments on commit 739c2e4

Please sign in to comment.