Skip to content

[GRL+ @ ICML 2020] PyTorch implementation for "Deep Graph Contrastive Representation Learning" (https://arxiv.org/abs/2006.04131v2)

License

Notifications You must be signed in to change notification settings

AlmogDavid/GRACE_recoverability

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GRACE

The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

For a thorough resource collection of self-supervised learning methods on graphs, you may refer to this awesome list.

Dependencies

  • torch 1.4.0
  • torch-geometric 1.5.0
  • sklearn 0.21.3
  • numpy 1.18.1
  • pyyaml 5.3.1

Install all dependencies using

pip install -r requirements.txt

If you encounter some problems during installing torch-geometric, please refer to the installation manual on its official website.

Usage

Train and evaluate the model by executing

python train.py --dataset Cora

The --dataset argument should be one of [ Cora, CiteSeer, PubMed, DBLP ].

Citation

If you use our code in your own research, please cite the following article:

@inproceedings{Zhu:2020vf,
  author = {Zhu, Yanqiao and Xu, Yichen and Yu, Feng and Liu, Qiang and Wu, Shu and Wang, Liang},
  title = {{Deep Graph Contrastive Representation Learning}},
  booktitle = {ICML Workshop on Graph Representation Learning and Beyond},
  year = {2020},
  url = {http://arxiv.org/abs/2006.04131}
}

About

[GRL+ @ ICML 2020] PyTorch implementation for "Deep Graph Contrastive Representation Learning" (https://arxiv.org/abs/2006.04131v2)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.3%
  • Shell 2.7%