# This repository is no longer being updated. Future development of code tools for geospatial machine learning analysis will be done at https://github.com/cosmiq/solaris.
Segmentation Nets designed for use with SpaceNet datasets and other remote sensing data
An example of the output of this tool can be found at https://cwnets-demo.netlify.com/
Using conda
Create Virtual Environment
`
conda create -n cw-nets python-3.6 pip cython
`
Install geospatial requirements ``` conda install --name cw-nets
rtree gdal
Install Deep Learning Frameworks:
`
conda install pytorch torchvision cuda91 -c pytorch
conda install opencv scikit-image
`
Install CosmiQ tools
`
pip install git+https://github.com/CosmiQ/cw-tiler.git@dataset_creation
pip install git+https://github.com/CosmiQ/cw-nets.git@pytorch_generator
`
- python create_mask.py --raster_path s3://spacenet-dataset/AOI_2_Vegas/srcData/rasterData/AOI_2_Vegas_MUL-PanSharpen_Cloud.tif
- --output_name AOI_2_Vegas_v11.tif --data_output $OUTPUT_PATH --model_path weights/deepglobe_buildings.pt --cell_size 200 --stride_size 190 --tile_size 650
- cw-tiler https://github.com/CosmiQ/cw-tiler
- numpy
- tqdm
- shapely
- rasterio
- opencv
- scikit-image
- scikit-learn
- tensorflow
- keras
- torch
- torchvision
See LICENSE.txt.
See AUTHORS.txt.
See CHANGES.txt.