Skip to content

Commit

Permalink
goedel2 wip
Browse files Browse the repository at this point in the history
  • Loading branch information
iehality committed Sep 10, 2024
1 parent c1cd584 commit ef91953
Showing 1 changed file with 49 additions and 0 deletions.
49 changes: 49 additions & 0 deletions src/first_order/goedel2.md
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,56 @@ Thanks to the completeness theorem, the following holds.
- $U \vdash \mathrm{Bew}_T(\ulcorner \sigma \to \pi \urcorner) \to \mathrm{Bew}_T(\ulcorner \sigma \urcorner) \to \mathrm{Bew}_T(\ulcorner \pi \urcorner)$
- $U \vdash \sigma \to \mathrm{Bew}_T(\ulcorner \sigma \urcorner)$ if $\sigma \in \Sigma_1\text{-sentence}$

## Second Incompleteness Theorem

Assume that $T$ is stronger than $\mathsf{I}\Sigma_1$.

### Fixpoint Lemma

Since the substitution is $\Sigma_1$, There is a formula $\mathrm{ssnum}(y, p, x)$
such that, for all formula $\varphi$ with only one variable and $x, y \in V$,

$$
\mathrm{ssnum}(y, {\ulcorner \varphi \urcorner}, x) \iff
y = \ulcorner \varphi(\overline{x}) \urcorner
$$

holds. (overline $\overline{\bullet}$ denotes the (formalized) numeral of $x$)

Define a sentence $\mathrm{fixpoint}_\theta$ for formula (with one variable) $\theta$ as follows.

$$
\begin{align*}
\mathrm{fixpoint}_\theta
&\coloneqq \mathrm{diag}_\theta(\overline{\ulcorner \mathrm{diag}_\theta \urcorner}) \\
\mathrm{diag}_\theta(x)
&\coloneqq (\forall y)[\mathrm{ssnum}(y, x, x) \to \theta (y)]
\end{align*}
$$

**Lemma**: $T \vdash \mathrm{fixpoint}_\theta \leftrightarrow \theta({\ulcorner \mathrm{fixpoint}_\theta \urcorner})$

- _Proof._
$$
\begin{align*}
\mathrm{fixpoint}_\theta
&\equiv
(\forall x)[
\mathrm{ssnum}(
x,
{\ulcorner \mathrm{diag}_\theta \urcorner},
{\ulcorner \mathrm{diag}_\theta \urcorner}) \to
\theta (x)
] \\
&\leftrightarrow
\theta(\ulcorner \mathrm{diag}_\theta(\overline{\ulcorner \mathrm{diag}_\theta \urcorner}) \urcorner) \\
&\equiv
\theta(\ulcorner \mathrm{fixpoint}_\theta \urcorner)
\end{align*}
$$

### Main Theorem



0 comments on commit ef91953

Please sign in to comment.