Skip to content

Code for the paper: "Recursive Self-Attention Modules-Based Network for Panchromatic and Multispectral Image Fusion", JSTARS 2023.

Notifications You must be signed in to change notification settings

JUSTM0VE0N/RSANet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

Recursive Self-Attention Modules-Based Network for Panchromatic and Multispectral Image Fusion

  • Code for the paper: "Recursive Self-Attention Modules-Based Network for Panchromatic and Multispectral Image Fusion", JSTARS 2023. [paper]
  • State-of-the-art (SOTA) performance of remote sensing image fusion.

RSANet

Method

RSAM

RSAM

We propose a novel recursive self-attention module (RSAM), which consists of two stages: spatial-spectral similarity extraction and self-attention weight generation. The proposed RSAM employs a global-to-local strategy to capture the global interdependencies of two distinct local locations in the feature map. This method allows for simultaneous consideration of both spatial and spectral information while focusing on more mutual information between spectral and spatial dimensions.

Code

see ./model/RSAM.py

Citation

@ARTICLE{10294268,
  author={Liu, Chuang and Wei, Lu and Zhang, Zhiqi and Feng, Xiaoxiao and Xiang, Shao},
  journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, 
  title={Recursive Self-Attention Modules-Based Network for Panchromatic and Multispectral Image Fusion}, 
  year={2023},
  volume={16},
  number={},
  pages={10067-10083},
  doi={10.1109/JSTARS.2023.3327167}}

Contact

We are glad to hear from you. If you have any questions, please feel free to contact us.

About

Code for the paper: "Recursive Self-Attention Modules-Based Network for Panchromatic and Multispectral Image Fusion", JSTARS 2023.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages