Library of deterministic samples, to be downloaded for use in filtering, control, and cubature algorithms.
- Literature
- LCD in general: https://ieeexplore.ieee.org/document/4648104
- DMA of Gaussians: https://ieeexplore.ieee.org/document/5400649
- S2KF: https://isif.org/media/smart-sampling-kalman-filter-symmetric-samples
- Code
import pandas
from urllib.error import HTTPError
# Samples Cache
data_dict = {}
# Get Samples from Cache (and load if not available)
def get_data(url):
if not (url in data_dict):
try:
data = pandas.read_csv(url, header=None).to_numpy()
except HTTPError:
# URL doesn't exist, data not available
data = None
data_dict[url] = data
return data_dict[url]
def url_SND_LCD(D, L):
return f'https://raw.githubusercontent.com/KIT-ISAS/deterministic-samples-csv/main/standard-normal/glcd/D{D}-N{L}.csv'
# get 100 2D standard normal samples
X = get_data(url_SND_LCD(2, 100))