Skip to content

KristofPusztai/EQL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GitHub Action Badge codecov GitHub release (latest by date) PyPI - License Downloads GitHub issues

Introduction:

A tensorflow implementation of the Equation Learner Neural Network based model: Imgur

Functionality:

Installation:

pip:

pip install EQL-NN

or from github:

git clone https://github.com/KristofPusztai/EQL.git

Navigate to cloned directory and run setup.py

sudo python setup.py install

Creating and training a model:

from EQL.model import EQL
EQLmodel = EQL(num_layers = 2, dim=5, v = [1,1]) # num_layers -> hidden_layers, dim -> dimension of input, v -> number of binary inputs
x = tf.random_normal_initializer()(shape=(100, 5))
y = tf.random_normal_initializer()(shape=(100, 1))

EQLmodel.build_and_compile(self, metrics=None, loss_weights=None, weighted_metrics=None,
                           run_eagerly=None, kernel_regularizer=None,
                           w_init='random_normal', b_init='random_normal, exclude=None) # exclude specifies activation function exclusions in layers
                           
EQLmodel.fit(x, y, lmbda, t0=100, t1=0, t2=0, initial_epoch=0, verbose=0, batch_size=None, callbacks=None,
        validation_split=0.0, validation_data=None, shuffle=True, class_weight=None,
        sample_weight=None, steps_per_epoch=None,
        validation_steps=None, validation_batch_size=None, validation_freq=1,
        max_queue_size=10, workers=1, use_multiprocessing=False, atol=0.01)

Prediction:

EQLmodel.predict(x, batch_size=None, verbose=0, steps=None, 
                 callbacks=None, max_queue_size=10,
                 workers=1, use_multiprocessing=False)

Note: use tensor input for maximum computational efficiency

Model Information:

There are a variety of methods for understanding what is going on in your model.

EQLmodel.summary() # Provides tensorflow summary
EQLmodel.count_params() # Provides # trainable params
EQLmodel.get_weights(layer) #returns array of layer values
EQLmodel.set_weights(layer, weights) #sets weights of specified layer
EQLmodel.formula(raw_latex=False, reduce=True) # Returns interpretable equations via sympy

EQLmodel.evaluate(x=None, y=None, batch_size=None, verbose=1,
                  sample_weight=None, steps=None,
                  callbacks=None, max_queue_size=10, 
                  workers=1, use_multiprocessing=False,
                  return_dict=False)
# Returns the loss value & metrics values for the model

Can also access the tensorflow model directly to use other TensorFlow functions such as saving:

EQLmodel.model.save('path/to/save')

Implementation Notes:

Training regiment is interpretted as debiased LASSO:

  • T0 epochs are normal training, no regularization
  • T1 epochs are L1 regularized training, continuing where T0 ended
  • T2 epochs are L0 (weights with values close to 0, |w| < atol, are rounded to 0 and left untrained) regularized training, continuing from T1

Check out the jupyter notebook for examples on learning sinusoidal functions: https://github.com/KristofPusztai/EQL/blob/master/Jupyter%20Notebooks/EQLtest.ipynb