Skip to content

Commit

Permalink
Add Efficientnet pipeline to hw_bench script
Browse files Browse the repository at this point in the history
Signed-off-by: Janusz Lisiecki <jlisiecki@nvidia.com>
  • Loading branch information
JanuszL committed Oct 30, 2024
1 parent 268704e commit ad93fb8
Showing 1 changed file with 95 additions and 3 deletions.
98 changes: 95 additions & 3 deletions internal_tools/hw_decoder_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,8 @@
import random
import numpy as np
import os
from nvidia.dali.auto_aug import auto_augment
from nvidia.dali.auto_aug import auto_augment, trivial_augment


parser = argparse.ArgumentParser(description="DALI HW decoder benchmark")
parser.add_argument("-b", dest="batch_size", help="batch size", default=1, type=int)
Expand All @@ -47,17 +48,24 @@
parser.add_argument(
"-p",
dest="pipeline",
choices=["decoder", "rn50", "efficientnet_inference", "vit"],
choices=["decoder", "rn50", "efficientnet_inference", "vit", "efficientnet_training"],
help="pipeline to test",
default="decoder",
type=str,
)
parser.add_argument(
"--aug-strategy",
dest="aug_strategy",
choices=["autoaugment", "trivialaugment", "none"],
default="autoaugment",
type=str,
)
parser.add_argument("--width_hint", dest="width_hint", default=0, type=int)
parser.add_argument("--height_hint", dest="height_hint", default=0, type=int)
parser.add_argument(
"--hw_load",
dest="hw_load",
help="HW decoder workload (e.g. 0.66 means 66% of the batch)",
help="HW decoder workload (e.g. 0.66 means 66%% of the batch)",
default=0.75,
type=float,
)
Expand Down Expand Up @@ -114,6 +122,81 @@ def RN50Pipeline(minibatch_size):
return images


@pipeline_def(
batch_size=args.batch_size,
num_threads=args.num_threads,
device_id=args.device_id,
seed=0,
enable_conditionals=True,
)
def EfficientnetTrainingPipeline(
minibatch_size,
automatic_augmentation="autoaugment",
):
dali_device = args.device
output_layout = types.NCHW
rng = fn.random.coin_flip(probability=0.5)

jpegs, _ = fn.readers.file(
name="Reader",
file_root=args.images_dir,
)

if dali_device == "gpu":
decoder_device = "mixed"
resize_device = "gpu"
else:
decoder_device = "cpu"
resize_device = "cpu"

images = fn.decoders.image_random_crop(
jpegs,
device=decoder_device,
output_type=types.RGB,
random_aspect_ratio=[0.75, 4.0 / 3.0],
random_area=[0.08, 1.0],
hw_decoder_load=args.hw_load,
preallocate_width_hint=args.width_hint,
preallocate_height_hint=args.height_hint,
)

images = fn.resize(
images,
device=resize_device,
size=[224, 224],
antialias=False,
minibatch_size=minibatch_size,
)

# Make sure that from this point we are processing on GPU regardless of dali_device parameter
images = images.gpu()

images = fn.flip(images, horizontal=rng)

# Based on the specification, apply the automatic augmentation policy. Note, that from the point
# of Pipeline definition, this `if` statement relies on static scalar parameter, so it is
# evaluated exactly once during build - we either include automatic augmentations or not.
# We pass the shape of the image after the resize so the translate operations are done
# relative to the image size.
if automatic_augmentation == "autoaugment":
output = auto_augment.auto_augment_image_net(images, shape=[224, 224])
elif automatic_augmentation == "trivialaugment":
output = trivial_augment.trivial_augment_wide(images, shape=[224, 224])
else:
output = images

output = fn.crop_mirror_normalize(
output,
dtype=types.FLOAT,
output_layout=output_layout,
crop=(224, 224),
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
std=[0.229 * 255, 0.224 * 255, 0.225 * 255],
)

return output


@pipeline_def(
batch_size=args.batch_size,
num_threads=args.num_threads,
Expand Down Expand Up @@ -256,6 +339,15 @@ def vit_pipeline(is_training=False, image_shape=(384, 384, 3), num_classes=1000)
elif args.pipeline == "vit":
for i in range(args.gpu_num):
pipes.append(vit_pipeline(device_id=i + args.device_id))
elif args.pipeline == "efficientnet_training":
for i in range(args.gpu_num):
pipes.append(
EfficientnetTrainingPipeline(
device_id=i + args.device_id,
minibatch_size=args.minibatch_size,
automatic_augmentation=args.aug_strategy,
)
)
else:
raise RuntimeError("Unsupported pipeline")
for p in pipes:
Expand Down

0 comments on commit ad93fb8

Please sign in to comment.