Skip to content

PhrygianGates/cs285_homework_fall2020

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

My solutions to the assignments for Berkeley CS 285: Deep Reinforcement Learning, Decision Making, and Control.

Note that I self-studied the course, so I cannot verify my solutions (although based on my results they seem to be correct). To try my solutions on your own computer, make sure you have pipenv installed. I used pipenv to create and manage a virtualenv for each homework. Run pipenv install in each individual directory to install the required packages. I ran into an issue installing torch with pipenv, so in addition to running pipenv install go to pytorch.org and use their installation guide (make sure package manager is pip) to install torch. Also make sure that MuJoCo is installed and in the correct directory. See installation.md inside the hw1 folder for instructions.

All deliverables are in the soln_pdf folder inside each individual homework directory (e.g. hw2/soln_pdf/hw2.pdf).

This was developed on a Windows 10 PC using Python 3.7. Other versions of python probably work fine too, but I have not tested them.

UPDATE 12/12/20: I've migrated to Ubuntu 18.04.

For those who still want to work on this on Windows, a few notes:

pipenv install (probably) will still work. I've removed the Pipenv.lock files from the repository for easier cross-platform migration and support. Additionally, official Windows support for mujoco-py is deprecated, although it still worked on my system, so your performance may vary.

If you want to get my code to run on your system, a few installation notes:

I've downgraded to CUDA version 10.2, so now pipenv install torch torchvision works again (on Windows I had CUDA 11.0 installed), I recommend staying at CUDA 10.2 for now since tensorflow does not even support CUDA 11 (it also only technically supports 10.1, but according to many people online it should work perfectly fine for 10.2). If you have some other version of CUDA installed other than 10.2, then you need to use pip to install torch. Otherwise, run pipenv install --python 3.7.x inside each individual directory, and it should install all necessary packages. Replace the x with the latest version. As of writing this, the latest python 3.7 version was 3.7.9. Also, since pipenv is slow, I would also consider poetry for package management or just not using pipenv (or any other python package manager) at all and using python -m venv or virtualenv along with pip.

A few bits about getting mujoco-py to install on Ubuntu:

If you run into this error:

fatal error: GL/osmesa.h: No such file or directory

Run this command:

sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3

For more details, see here.

If you run into this error:

No such file or directory: 'patchelf': 'patchelf'

Run this command:

sudo apt install patchelf

The above command worked for me on Ubuntu 18.04, for other versions of Ubuntu you may need to add a PPA. See this link for more info.

About

CS285 Homework

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 78.4%
  • Python 20.4%
  • TeX 1.2%